Wang J S, Ritterbusch F, Dong X-Z, Gao C, Li H, Jiang W, Liu S-Y, Lu Z-T, Wang W-H, Yang G-M, Zhang Y-S, Zhang Z-Y
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
Phys Rev Lett. 2021 Jul 9;127(2):023201. doi: 10.1103/PhysRevLett.127.023201.
We have realized optical excitation, trapping, and detection of the radioisotope ^{81}Kr with an isotopic abundance of 0.9 ppt. The 124 nm light needed for the production of metastable atoms is generated by a resonant discharge lamp. Photon transport through the optically thick krypton gas inside the lamp is simulated and optimized to enhance both brightness and resonance. We achieve a state-of-the-art ^{81}Kr loading rate of 1800 atoms/h, which can be further scaled up by adding more lamps. The all-optical approach overcomes the limitations on precision and sample size of radiokrypton dating, enabling new applications in the earth sciences, particularly for dating of polar ice cores.
我们已经实现了对同位素丰度为0.9 ppt的放射性同位素(^{81}Kr)的光激发、捕获和检测。产生亚稳态原子所需的124纳米光由共振放电灯产生。通过模拟和优化光在灯内光学厚度较大的氪气中的传输,以提高亮度和共振效果。我们实现了1800个原子/小时的先进(^{81}Kr)加载速率,通过增加更多的灯可以进一步扩大该速率。这种全光学方法克服了放射性氪测年在精度和样本大小方面的限制,为地球科学带来了新的应用,特别是在极地冰芯测年方面。