Suppr超能文献

用于平面度测量的大规模平面点云的两两配准算法

Pairwise Registration Algorithm for Large-Scale Planar Point Cloud Used in Flatness Measurement.

作者信息

Shu Zichao, Cao Songxiao, Jiang Qing, Xu Zhipeng, Tang Jianbin, Zhou Qiaojun

机构信息

College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2021 Jul 16;21(14):4860. doi: 10.3390/s21144860.

Abstract

In this paper, an optimized three-dimensional (3D) pairwise point cloud registration algorithm is proposed, which is used for flatness measurement based on a laser profilometer. The objective is to achieve a fast and accurate six-degrees-of-freedom (6-DoF) pose estimation of a large-scale planar point cloud to ensure that the flatness measurement is precise. To that end, the proposed algorithm extracts the boundary of the point cloud to obtain more effective feature descriptors of the keypoints. Then, it eliminates the invalid keypoints by neighborhood evaluation to obtain the initial matching point pairs. Thereafter, clustering combined with the geometric consistency constraints of correspondences is conducted to realize coarse registration. Finally, the iterative closest point (ICP) algorithm is used to complete fine registration based on the boundary point cloud. The experimental results demonstrate that the proposed algorithm is superior to the current algorithms in terms of boundary extraction and registration performance.

摘要

本文提出了一种优化的三维(3D)成对点云配准算法,该算法用于基于激光轮廓仪的平面度测量。目标是实现大规模平面点云的快速、准确的六自由度(6-DoF)位姿估计,以确保平面度测量的精确性。为此,所提算法提取点云边界以获得关键点更有效的特征描述符。然后,通过邻域评估消除无效关键点以获得初始匹配点对。此后,结合对应关系的几何一致性约束进行聚类以实现粗配准。最后,使用迭代最近点(ICP)算法基于边界点云完成精配准。实验结果表明,所提算法在边界提取和配准性能方面优于当前算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2533/8309750/f22ee014595e/sensors-21-04860-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验