文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Zr-oxine 标记的 huLym-1-A-BB3z-CAR T 细胞通过 PET 成像在临床前肿瘤模型中的时空生物分布。

Spatio-temporal biodistribution of Zr-oxine labeled huLym-1-A-BB3z-CAR T-cells by PET imaging in a preclinical tumor model.

机构信息

Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, ZNI 117, Los Angeles, CA, 90033, USA.

Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave, HMR 205, Los Angeles, CA, 9033, USA.

出版信息

Sci Rep. 2021 Jul 23;11(1):15077. doi: 10.1038/s41598-021-94490-0.


DOI:10.1038/s41598-021-94490-0
PMID:34302002
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8302724/
Abstract

Quantitative in vivo monitoring of cell biodistribution offers assessment of treatment efficacy in real-time and can provide guidance for further optimization of chimeric antigen receptor (CAR) modified cell therapy. We evaluated the utility of a non-invasive, serial Zr-oxine PET imaging to assess optimal dosing for huLym-1-A-BB3z-CAR T-cell directed to Lym-1-positive Raji lymphoma xenograft in NOD Scid-IL2Rgamma (NSG) mice. In vitro experiments showed no detrimental effects in cell health and function following Zr-oxine labeling. In vivo experiments employed simultaneous PET/MRI of Raji-bearing NSG mice on day 0 (3 h), 1, 2, and 5 after intravenous administration of low (1.87 ± 0.04 × 10 cells), middle (7.14 ± 0.45 × 10 cells), or high (16.83 ± 0.41 × 10 cells) cell dose. Biodistribution (%ID/g) in regions of interests defined over T1-weighted MRI, such as blood, bone, brain, liver, lungs, spleen, and tumor, were analyzed from PET images. Escalating doses of CAR T-cells resulted in dose-dependent %ID/g biodistributions in all regions. Middle and High dose groups showed significantly higher tumor %ID/g compared to Low dose group on day 2. Tumor-to-blood ratios showed the enhanced extravascular tumor uptake by day 2 in the Low dose group, while the Middle dose showed significant tumor accumulation starting on day 1 up to day 5. From these data obtained over time, it is apparent that intravenously administered CAR T-cells become trapped in the lung for 3-5 h and then migrate to the liver and spleen for up to 2-3 days. This surprising biodistribution data may be responsible for the inactivation of these cells before targeting solid tumors. Ex vivo biodistributions confirmed in vivo PET-derived biodistributions. According to these studies, we conclude that in vivo serial PET imaging with Zr-oxine labeled CAR T-cells provides real-time monitoring of biodistributions crucial for interpreting efficacy and guiding treatment in patient care.

摘要

定量的细胞体内分布监测可实时评估治疗效果,并可为嵌合抗原受体 (CAR) 修饰细胞治疗的进一步优化提供指导。我们评估了非侵入性、连续的 Zr-oxine PET 成像在评估针对 Lym-1 阳性 Raji 淋巴瘤异种移植物的 huLym-1-A-BB3z-CAR T 细胞的最佳剂量中的效用,这些 T 细胞在 NOD Scid-IL2Rgamma (NSG) 小鼠中。体外实验表明,Zr-oxine 标记后细胞健康和功能没有不良影响。体内实验在第 0 天(3 h)、第 1 天、第 2 天和第 5 天,对静脉注射低(1.87 ± 0.04 × 10 个细胞)、中(7.14 ± 0.45 × 10 个细胞)或高(16.83 ± 0.41 × 10 个细胞)细胞剂量的携带 Raji 肿瘤的 NSG 小鼠进行同时 PET/MRI 检测。从 PET 图像中分析了 T1 加权 MRI 定义的 ROI 中(如血液、骨骼、大脑、肝脏、肺部、脾脏和肿瘤)的生物分布(%ID/g)。随着 CAR T 细胞剂量的增加,所有区域的 %ID/g 生物分布均呈剂量依赖性。第 2 天,中剂量组和高剂量组的肿瘤 %ID/g 明显高于低剂量组。第 2 天,低剂量组的肿瘤-血液比显示出增强的血管外肿瘤摄取,而中剂量组从第 1 天开始至第 5 天显示出明显的肿瘤积累。从这些随时间获得的数据可以明显看出,静脉内给予的 CAR T 细胞在 3-5 小时内被困在肺部,然后迁移到肝脏和脾脏长达 2-3 天。这种令人惊讶的生物分布数据可能是这些细胞在靶向实体瘤之前失活的原因。离体生物分布实验证实了体内 PET 衍生的生物分布。根据这些研究,我们得出结论,Zr-oxine 标记的 CAR T 细胞的体内连续 PET 成像提供了对生物分布的实时监测,这对于解释疗效和指导患者护理中的治疗至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/dec46def0d32/41598_2021_94490_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/bf2f4027d471/41598_2021_94490_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/aa0c630fee23/41598_2021_94490_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/1830311bd5b6/41598_2021_94490_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/a54fa2f35f46/41598_2021_94490_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/dec46def0d32/41598_2021_94490_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/bf2f4027d471/41598_2021_94490_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/aa0c630fee23/41598_2021_94490_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/1830311bd5b6/41598_2021_94490_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/a54fa2f35f46/41598_2021_94490_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/8302724/dec46def0d32/41598_2021_94490_Fig5_HTML.jpg

相似文献

[1]
Spatio-temporal biodistribution of Zr-oxine labeled huLym-1-A-BB3z-CAR T-cells by PET imaging in a preclinical tumor model.

Sci Rep. 2021-7-23

[2]
PET of Adoptively Transferred Chimeric Antigen Receptor T Cells with Zr-Oxine.

J Nucl Med. 2018-5-4

[3]
Feasibility of real-time in vivo 89Zr-DFO-labeled CAR T-cell trafficking using PET imaging.

PLoS One. 2020-1-7

[4]
Direct and Indirect Chimeric Antigen Receptor T-Cell Imaging with PET/MRI in a Tumor Xenograft Model.

Radiology. 2024-2

[5]
Feasibility study of Ga-labeled CAR T cells for in vivo tracking using micro-positron emission tomography imaging.

Acta Pharmacol Sin. 2021-5

[6]
Characterization of chimeric antigen receptor modified T cells expressing scFv-IL-13Rα2 after radiolabeling with Zirconium oxine for PET imaging.

J Transl Med. 2023-6-7

[7]
Imaging of cell-based therapy using Zr-oxine cell labeling for positron emission tomography.

Nanotheranostics. 2021

[8]
Preclinical PET imaging of bispecific antibody ERY974 targeting CD3 and glypican 3 reveals that tumor uptake correlates to T cell infiltrate.

J Immunother Cancer. 2020-3

[9]
A comparison of DFO and DFO* conjugated to trastuzumab-DM1 for complexing Zr - In vitro stability and in vivo microPET/CT imaging studies in NOD/SCID mice with HER2-positive SK-OV-3 human ovarian cancer xenografts.

Nucl Med Biol. 2020

[10]
(89)Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies.

Radiology. 2015-5

引用本文的文献

[1]
Zirconium-89-Oxine Cell Tracking by PET Reveals Preferential Monocyte Recruitment to Cancer and Inflammation over Macrophages.

Pharmaceuticals (Basel). 2025-6-15

[2]
Intracellular Protein Binding of Zr-89 Oxine Cell Labeling for PET Cell Tracking Studies.

Pharmaceutics. 2025-4-15

[3]
Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes.

AAPS J. 2025-3-3

[4]
In vivo tracking of ex-vivo-generated Zr-oxine-labeled plasma cells by PET in a non-human primate model.

Mol Ther. 2025-2-5

[5]
Mathematical modeling of endogenous and exogenously administered T cell recirculation in mouse and its application to pharmacokinetic studies of cell therapies.

Front Immunol. 2024

[6]
Making drugs from T cells: The quantitative pharmacology of engineered T cell therapeutics.

NPJ Syst Biol Appl. 2024-3-18

[7]
Utilizing induced neural stem cell-based delivery of a cytokine cocktail to enhance chimeric antigen receptor-modified T-cell therapy for brain cancer.

Bioeng Transl Med. 2023-5-29

[8]
Cellular and molecular imaging of CAR-T cell-based immunotherapy.

Adv Drug Deliv Rev. 2023-12

[9]
Probing immune infiltration dynamics in cancer by in vivo imaging.

Curr Opin Chem Biol. 2022-4

本文引用的文献

[1]
A kit formulation for the preparation of [Zr]Zr(oxinate) for PET cell tracking: White blood cell labelling and comparison with [In]In(oxinate).

Nucl Med Biol. 2020

[2]
Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with Zr-oxine PET-CT.

Stem Cell Res Ther. 2020-6-26

[3]
A Humanized Lym-1 CAR with Novel DAP10/DAP12 Signaling Domains Demonstrates Reduced Tonic Signaling and Increased Antitumor Activity in B-Cell Lymphoma Models.

Clin Cancer Res. 2020-7-15

[4]
Tracking of Adoptively Transferred Natural Killer Cells in Rhesus Macaques Using Zirconium-Oxine Cell Labeling and PET Imaging.

Clin Cancer Res. 2020-6-1

[5]
Feasibility of real-time in vivo 89Zr-DFO-labeled CAR T-cell trafficking using PET imaging.

PLoS One. 2020-1-7

[6]
'Off-the-shelf' allogeneic CAR T cells: development and challenges.

Nat Rev Drug Discov. 2020-1-3

[7]
Radiolabeling and Imaging of Adoptively Transferred Immune Cells by Positron Emission Tomography.

Methods Mol Biol. 2020

[8]
L-Selectin Enhanced T Cells Improve the Efficacy of Cancer Immunotherapy.

Front Immunol. 2019-6-12

[9]
Bone marrow cell homing to sites of acute tibial fracture: Zr-oxine cell labeling with positron emission tomographic imaging in a mouse model.

EJNMMI Res. 2018-12-13

[10]
In Vivo PET Tracking of Zr-Labeled Vγ9Vδ2 T Cells to Mouse Xenograft Breast Tumors Activated with Liposomal Alendronate.

Mol Ther. 2018-10-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索