文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无监督机器学习在解剖病理学中的应用。

The Utility of Unsupervised Machine Learning in Anatomic Pathology.

机构信息

Division of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.

National Health Laboratory Service, Johannesburg, South Africa.

出版信息

Am J Clin Pathol. 2022 Jan 6;157(1):5-14. doi: 10.1093/ajcp/aqab085.


DOI:10.1093/ajcp/aqab085
PMID:34302331
Abstract

OBJECTIVES: Developing accurate supervised machine learning algorithms is hampered by the lack of representative annotated datasets. Most data in anatomic pathology are unlabeled and creating large, annotated datasets is a time consuming and laborious process. Unsupervised learning, which does not require annotated data, possesses the potential to assist with this challenge. This review aims to introduce the concept of unsupervised learning and illustrate how clustering, generative adversarial networks (GANs) and autoencoders have the potential to address the lack of annotated data in anatomic pathology. METHODS: A review of unsupervised learning with examples from the literature was carried out. RESULTS: Clustering can be used as part of semisupervised learning where labels are propagated from a subset of annotated data points to remaining unlabeled data points in a dataset. GANs may assist by generating large amounts of synthetic data and performing color normalization. Autoencoders allow training of a network on a large, unlabeled dataset and transferring learned representations to a classifier using a smaller, labeled subset (unsupervised pretraining). CONCLUSIONS: Unsupervised machine learning techniques such as clustering, GANs, and autoencoders, used individually or in combination, may help address the lack of annotated data in pathology and improve the process of developing supervised learning models.

摘要

目的:由于缺乏代表性的标注数据集,开发准确的监督机器学习算法受到阻碍。解剖病理学中的大多数数据都是未标记的,创建大型标注数据集是一个耗时且费力的过程。不需要标注数据的无监督学习有可能有助于解决这一挑战。本文旨在介绍无监督学习的概念,并举例说明聚类、生成对抗网络 (GAN) 和自动编码器如何有潜力解决解剖病理学中缺乏标注数据的问题。

方法:对无监督学习进行了文献回顾,并举例说明。

结果:聚类可作为半监督学习的一部分,其中标签从一组标注数据点传播到数据集的其余未标注数据点。GAN 可通过生成大量合成数据并进行颜色归一化来辅助。自动编码器允许在大型未标注数据集上训练网络,并使用较小的标注子集(无监督预训练)将学习到的表示传递给分类器。

结论:聚类、GAN 和自动编码器等无监督机器学习技术单独或组合使用,可能有助于解决病理学中缺乏标注数据的问题,并改进开发监督学习模型的过程。

相似文献

[1]
The Utility of Unsupervised Machine Learning in Anatomic Pathology.

Am J Clin Pathol. 2022-1-6

[2]
Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods.

IEEE Trans Pattern Anal Mach Intell. 2022-4

[3]
Unsupervised and self-supervised deep learning approaches for biomedical text mining.

Brief Bioinform. 2021-3-22

[4]
The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics.

Rep Prog Phys. 2021-12-7

[5]
CAESNet: Convolutional AutoEncoder based Semi-supervised Network for improving multiclass classification of endomicroscopic images.

J Am Med Inform Assoc. 2019-11-1

[6]
A Tour of Unsupervised Deep Learning for Medical Image Analysis.

Curr Med Imaging. 2021

[7]
Convolutional sparse kernel network for unsupervised medical image analysis.

Med Image Anal. 2019-6-12

[8]
Semi-supervised generative adversarial networks for closed-angle detection on anterior segment optical coherence tomography images: an empirical study with a small training dataset.

Ann Transl Med. 2021-7

[9]
Procedure code overutilization detection from healthcare claims using unsupervised deep learning methods.

BMC Med Inform Decis Mak. 2023-9-28

[10]
Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology.

Plant J. 2022-9

引用本文的文献

[1]
Automated determination of tumor cell percentages in whole slide images: A nuclear classification study for molecular pathology tests.

J Pathol Inform. 2025-5-16

[2]
Preserving spatial and quantitative information in unpaired biomedical image-to-image translation.

Cell Rep Methods. 2025-6-16

[3]
Enhancing basal cell carcinoma classification in preoperative biopsies via transfer learning with weakly supervised graph transformers.

BMC Med Imaging. 2025-5-16

[4]
Covid-19, Diagnostic History and Mortality from Medicare 1999-2021, In an All-Cause Mortality Approach.

Arch Intern Med Res. 2023

[5]
HcGAN: Harmonic conditional generative adversarial network for efficiently generating high-quality IHC images from H&E.

Heliyon. 2024-10-1

[6]
Laboratory Data as a Potential Source of Bias in Healthcare Artificial Intelligence and Machine Learning Models.

Ann Lab Med. 2025-1-1

[7]
A Comparison of Diagnostic and Immunohistochemical Workup and Literature Review Capabilities of Online Artificial Intelligence Assistance Models in Pathology.

Cureus. 2024-5-25

[8]
Explainability and causability in digital pathology.

J Pathol Clin Res. 2023-7

[9]
Investigation of semi- and self-supervised learning methods in the histopathological domain.

J Pathol Inform. 2023-3-12

[10]
Chronic Lymphocytic Leukemia Progression Diagnosis with Intrinsic Cellular Patterns via Unsupervised Clustering.

Cancers (Basel). 2022-5-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索