文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医学图像分析的无监督深度学习之旅。

A Tour of Unsupervised Deep Learning for Medical Image Analysis.

机构信息

Department of Computer Science, Jamia Millia Islamia, New Delhi, India.

出版信息

Curr Med Imaging. 2021;17(9):1059-1077. doi: 10.2174/1573405617666210127154257.


DOI:10.2174/1573405617666210127154257
PMID:33504314
Abstract

BACKGROUND: Interpretation of medical images for the diagnosis and treatment of complex diseases from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical image analysis. Several reviews on supervised deep learning are published, but hardly any rigorous review on unsupervised deep learning for medical image analysis is available. OBJECTIVE: The objective of this review is to systematically present various unsupervised deep learning models, tools, and benchmark datasets applied to medical image analysis. Some of the discussed models are autoencoders and their variants, Restricted Boltzmann Machines (RBM), Deep Belief Networks (DBN), Deep Boltzmann Machine (DBM), and Generative Adversarial Network (GAN). Future research opportunities and challenges of unsupervised deep learning techniques for medical image analysis are also discussed. CONCLUSION: Currently, interpretation of medical images for diagnostic purposes is usually performed by human experts that may be replaced by computer-aided diagnosis due to advancement in machine learning techniques, including deep learning, and the availability of cheap computing infrastructure through cloud computing. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them having certain pros and cons. Since human supervisions are not always available or are inadequate or biased, therefore, unsupervised learning algorithms give a big hope with lots of advantages for biomedical image analysis.

摘要

背景:从高维异质数据中解释用于复杂疾病诊断和治疗的医学图像仍然是改变医疗保健的关键挑战。在过去几年中,监督和无监督深度学习在医学图像分析领域都取得了有希望的成果。已经发表了几篇关于监督深度学习的综述,但几乎没有关于无监督深度学习在医学图像分析中的严格综述。

目的:本综述的目的是系统地介绍应用于医学图像分析的各种无监督深度学习模型、工具和基准数据集。讨论的一些模型是自动编码器及其变体、受限玻尔兹曼机 (RBM)、深度置信网络 (DBN)、深度玻尔兹曼机 (DBM) 和生成对抗网络 (GAN)。还讨论了无监督深度学习技术在医学图像分析中的未来研究机会和挑战。

结论:目前,用于诊断目的的医学图像解释通常由人类专家进行,由于机器学习技术的进步,包括深度学习,以及通过云计算提供廉价的计算基础设施,计算机辅助诊断可能会取代人类专家。监督和无监督机器学习方法都广泛应用于医学图像分析,它们各自都有一定的优缺点。由于人类监督并不总是可用或不足或存在偏差,因此,无监督学习算法为生物医学图像分析带来了很大的希望和优势。

相似文献

[1]
A Tour of Unsupervised Deep Learning for Medical Image Analysis.

Curr Med Imaging. 2021

[2]
Lung and Pancreatic Tumor Characterization in the Deep Learning Era: Novel Supervised and Unsupervised Learning Approaches.

IEEE Trans Med Imaging. 2019-1-23

[3]
Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.

Magn Reson Med. 2020-1

[4]
Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.

Comput Med Imaging Graph. 2020-1

[5]
Deep generative learning for automated EHR diagnosis of traditional Chinese medicine.

Comput Methods Programs Biomed. 2018-5-4

[6]
Convolutional sparse kernel network for unsupervised medical image analysis.

Med Image Anal. 2019-6-12

[7]
Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images.

IEEE Trans Med Imaging. 2018-11-2

[8]
Unsupervised and self-supervised deep learning approaches for biomedical text mining.

Brief Bioinform. 2021-3-22

[9]
Generative Adversarial Network for Medical Images (MI-GAN).

J Med Syst. 2018-10-12

[10]
The Utility of Unsupervised Machine Learning in Anatomic Pathology.

Am J Clin Pathol. 2022-1-6

引用本文的文献

[1]
Clustering cell nuclei on microgrooves for disease diagnosis using deep learning.

Sci Rep. 2025-7-2

[2]
Exploring a decade of deep learning in dentistry: A comprehensive mapping review.

Clin Oral Investig. 2025-2-19

[3]
A Comprehensive Survey of Deep Learning Approaches in Image Processing.

Sensors (Basel). 2025-1-17

[4]
A privacy-preserving expert system for collaborative medical diagnosis across multiple institutions using federated learning.

Sci Rep. 2024-9-27

[5]
Assistive tools for classifying neurological disorders using fMRI and deep learning: A guide and example.

Brain Behav. 2024-6

[6]
Image-based classification of wheat spikes by glume pubescence using convolutional neural networks.

Front Plant Sci. 2024-1-12

[7]
Diffusion MRI anomaly detection in glioma patients.

Sci Rep. 2023-11-21

[8]
Machine learning: a powerful tool for identifying key microbial agents associated with specific cancer types.

PeerJ. 2023

[9]
Breast Cancer Histopathological Images Segmentation Using Deep Learning.

Sensors (Basel). 2023-8-22

[10]
Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated MobileNetV2 and Xception Models.

Bioengineering (Basel). 2023-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索