Suppr超能文献

CRISPRi/a 基因编辑技术在人类诱导多能干细胞中的应用

CRISPRi/a Screening with Human iPSCs.

机构信息

Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.

Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Methods Mol Biol. 2021;2320:261-281. doi: 10.1007/978-1-0716-1484-6_23.

Abstract

Identifying causative genes in a given phenotype or disease model is important for biological discovery and drug development. The recent development of the CRISPR/Cas9 system has enabled unbiased and large-scale genetic perturbation screens to identify causative genes by knocking out many genes in parallel and selecting cells with desired phenotype of interest. However, compared to cancer cell lines, human somatic cells including cardiomyocytes (CMs), neuron cells, and endothelial cells are not easy targets of CRISPR screens because CRISPR screens require a large number of isogenic cells to be cultured and thus primary cells from patients are not ideal. The combination of CRISPR screens with induced pluripotent stem cell (iPSC) technology would be a powerful tool to identify causative genes and pathways because iPSCs can be expanded easily and differentiated to any cell type in principle. Here we describe a robust protocol for CRISPR screening using human iPSCs. Because each screening is different and needs to be customized depending on the cell types and phenotypes of interest, we show an example of CRISPR knockdown screening using CRISPRi system to identify essential genes to differentiate iPSCs to CMs.

摘要

确定给定表型或疾病模型中的致病基因对于生物发现和药物开发非常重要。最近开发的 CRISPR/Cas9 系统使通过并行敲除许多基因并选择具有所需表型的细胞来进行无偏和大规模遗传干扰筛选成为可能,从而能够识别致病基因。然而,与癌细胞系相比,人类体细胞,包括心肌细胞 (CMs)、神经元细胞和内皮细胞,并不是 CRISPR 筛选的理想目标,因为 CRISPR 筛选需要大量的同基因细胞进行培养,因此来自患者的原代细胞并不理想。CRISPR 筛选与诱导多能干细胞 (iPSC) 技术的结合将是识别致病基因和途径的有力工具,因为 iPSC 可以很容易地扩增,并且原则上可以分化为任何细胞类型。在这里,我们描述了一种使用人 iPSC 进行 CRISPR 筛选的稳健方案。由于每个筛选都不同,并且需要根据感兴趣的细胞类型和表型进行定制,因此我们展示了一个使用 CRISPRi 系统进行 CRISPR 敲低筛选的示例,以鉴定将 iPSC 分化为 CMs 的必需基因。

相似文献

1
CRISPRi/a Screening with Human iPSCs.
Methods Mol Biol. 2021;2320:261-281. doi: 10.1007/978-1-0716-1484-6_23.
3
Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
Methods. 2017 May 15;121-122:29-44. doi: 10.1016/j.ymeth.2017.05.009.
4
Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
Mol Ther. 2020 Jan 8;28(1):29-41. doi: 10.1016/j.ymthe.2019.09.006. Epub 2019 Sep 12.
9

引用本文的文献

1
Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges.
Stem Cell Res Ther. 2024 Jul 19;15(1):218. doi: 10.1186/s13287-024-03831-z.
5
Spatial and temporal organization of the genome: Current state and future aims of the 4D nucleome project.
Mol Cell. 2023 Aug 3;83(15):2624-2640. doi: 10.1016/j.molcel.2023.06.018. Epub 2023 Jul 6.
7
Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit.
Molecules. 2023 Feb 20;28(4):1982. doi: 10.3390/molecules28041982.
8
Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes.
Stem Cell Rev Rep. 2023 May;19(4):886-905. doi: 10.1007/s12015-023-10506-4. Epub 2023 Jan 19.
10
The use of new CRISPR tools in cardiovascular research and medicine.
Nat Rev Cardiol. 2022 Aug;19(8):505-521. doi: 10.1038/s41569-021-00669-3. Epub 2022 Feb 10.

本文引用的文献

1
CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming.
Cell Stem Cell. 2018 Nov 1;23(5):758-771.e8. doi: 10.1016/j.stem.2018.09.003. Epub 2018 Oct 11.
2
The CRISPR tool kit for genome editing and beyond.
Nat Commun. 2018 May 15;9(1):1911. doi: 10.1038/s41467-018-04252-2.
3
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
Nat Protoc. 2017 Apr;12(4):828-863. doi: 10.1038/nprot.2017.016. Epub 2017 Mar 23.
4
Induced pluripotent stem cell technology: a decade of progress.
Nat Rev Drug Discov. 2017 Feb;16(2):115-130. doi: 10.1038/nrd.2016.245. Epub 2016 Dec 16.
5
CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells.
Science. 2017 Jan 6;355(6320). doi: 10.1126/science.aah7111. Epub 2016 Dec 15.
7
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
8
Induced pluripotent stem cells: at the heart of cardiovascular precision medicine.
Nat Rev Cardiol. 2016 Jun;13(6):333-49. doi: 10.1038/nrcardio.2016.36. Epub 2016 Mar 24.
9
CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs.
Cell Stem Cell. 2016 Apr 7;18(4):541-53. doi: 10.1016/j.stem.2016.01.022. Epub 2016 Mar 10.
10
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.
Nat Rev Mol Cell Biol. 2016 Jan;17(1):5-15. doi: 10.1038/nrm.2015.2. Epub 2015 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验