Columbia Stem Cell Initiative, Stem Cell Core, Columbia University Irving Medical Center, New York, New York.
Spanish National Cancer Research Center, Madrid, Spain.
Curr Protoc. 2022 Aug;2(8):e519. doi: 10.1002/cpz1.519.
The CRISPR system is an adaptive defense mechanism used by bacteria and archaea against viruses and plasmids. The discovery of the CRISPR-associated protein Cas9 and its RNA-guided cleavage mechanism marked the beginning of a new era in genomic engineering by enabling the editing of a target region in the genome. Gene-edited cells or mice can be used as models for understanding human diseases. Given its high impact in functional genomic experiments on different model systems, several CRISPR/Cas9 protocols have been generated in the past years. The technique uses a straightforward "cut and stitch" mechanism, but requires an accurate step-by-step design. One of the key points is the use of an efficient programmable guide RNA to increase the rate of success in obtaining gene-specific edited clones. Here, we describe an efficient editing protocol using a ribonucleotide protein (RNP) complex for homology-directed repair (HDR)-based correction of a point mutation in an induced pluripotent stem cell (iPSC) line generated from a 14-year-old patient with severe early-onset obesity carrying a de novo variant of ARNT2. The resulting isogenic iPSC line, named CUIMCi003-A-1, has a normal karyotype, expresses stemness markers, and can be differentiated into progenies from all three germ layers. We provide a detailed workflow for designing a single guide RNA and donor DNA, and for isolating clonal human iPSCs edited with the desired modification. This article also focuses on parameters to consider when selecting reagents for CRISPR/Cas9 gene editing after testing their efficiency with in silico tools. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Design of sgRNAs and PCR primers Basic Protocol 2: Testing the efficiency of sgRNAs Basic Protocol 3: Design of template or donor DNA Basic Protocol 4: Targeted gene editing Basic Protocol 5: Selection of positive clones Basic Protocol 6: Freezing, thawing, and expansion of cells Basic Protocol 7: Characterization of edited cell lines.
CRISPR 系统是细菌和古菌用来对抗病毒和质粒的一种适应性防御机制。CRISPR 相关蛋白 Cas9 的发现及其 RNA 引导的切割机制的发现,标志着基因组工程新纪元的开始,使人们能够编辑基因组中的靶标区域。基因编辑细胞或小鼠可用作理解人类疾病的模型。鉴于其在不同模型系统的功能基因组实验中的高影响力,过去几年已经产生了几种 CRISPR/Cas9 方案。该技术使用一种简单的“切割和拼接”机制,但需要精确的分步设计。关键点之一是使用高效的可编程向导 RNA 来提高获得基因特异性编辑克隆的成功率。在这里,我们描述了一种使用核糖核蛋白 (RNP) 复合物进行同源定向修复 (HDR) 的有效编辑方案,以纠正从携带 ARNT2 从头变异的 14 岁严重早发性肥胖患者中产生的诱导多能干细胞 (iPSC) 系中的点突变。所得的同基因 iPSC 系命名为 CUIMCi003-A-1,具有正常核型,表达干细胞标志物,并且可以分化为来自所有三个胚层的后代。我们提供了一个详细的工作流程,用于设计单个向导 RNA 和供体 DNA,并用于分离用所需修饰编辑的克隆人 iPSC。本文还侧重于在通过计算机工具测试其效率后选择用于 CRISPR/Cas9 基因编辑的试剂时要考虑的参数。© 2022 作者。Wiley Periodicals LLC 出版的《当代协议》。基本方案 1:sgRNA 和 PCR 引物的设计基本方案 2:sgRNA 效率的测试基本方案 3:模板或供体 DNA 的设计基本方案 4:靶向基因编辑基本方案 5:阳性克隆的选择基本方案 6:细胞的冷冻、解冻和扩增基本方案 7:编辑细胞系的特征。