Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Trends Biochem Sci. 2021 Dec;46(12):992-1002. doi: 10.1016/j.tibs.2021.06.007. Epub 2021 Jul 22.
Tropospheric ozone (O) is among the most damaging air pollutant to plants. Plants alter the atmospheric O concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O and (ii) by dry deposition, which includes diffusion of O into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O. Deposition of O into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.
对流层臭氧(O)是对植物危害最大的空气污染物之一。植物通过两种截然不同的方式改变大气中的 O 浓度:(i)通过排放挥发性有机化合物(VOC),这些化合物是 O 的前体,以及(ii)通过干沉降,包括 O 通过气孔扩散到植被中以及通过非气孔途径的破坏。异戊二烯、单萜和较高萜烯类化合物由植物以改变对流层 O 的数量排放。O 向植被的沉积与气孔导度、叶片结构特征和质外体的解毒能力有关。一旦 O 进入叶片并与水相表面发生反应,其生化命运在很大程度上是未知的,但跟踪和识别初始产物的新技术有可能打开黑匣子。