Suppr超能文献

工程化耐热工业酵母马克斯克鲁维酵母以实现厌氧生长。

Engineering the thermotolerant industrial yeast Kluyveromyces marxianus for anaerobic growth.

机构信息

Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands.

Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands.

出版信息

Metab Eng. 2021 Sep;67:347-364. doi: 10.1016/j.ymben.2021.07.006. Epub 2021 Jul 23.

Abstract

Current large-scale, anaerobic industrial processes for ethanol production from renewable carbohydrates predominantly rely on the mesophilic yeast Saccharomyces cerevisiae. Use of thermotolerant, facultatively fermentative yeasts such as Kluyveromyces marxianus could confer significant economic benefits. However, in contrast to S. cerevisiae, these yeasts cannot grow in the absence of oxygen. Responses of K. marxianus and S. cerevisiae to different oxygen-limitation regimes were analyzed in chemostats. Genome and transcriptome analysis, physiological responses to sterol supplementation and sterol-uptake measurements identified absence of a functional sterol-uptake mechanism as a key factor underlying the oxygen requirement of K. marxianus. Heterologous expression of a squalene-tetrahymanol cyclase enabled oxygen-independent synthesis of the sterol surrogate tetrahymanol in K. marxianus. After a brief adaptation under oxygen-limited conditions, tetrahymanol-expressing K. marxianus strains grew anaerobically on glucose at temperatures of up to 45 °C. These results open up new directions in the development of thermotolerant yeast strains for anaerobic industrial applications.

摘要

目前,从可再生碳水化合物大规模生产乙醇的厌氧工业工艺主要依赖于嗜温酵母酿酒酵母(Saccharomyces cerevisiae)。使用耐热兼性发酵酵母如马克斯克鲁维酵母(Kluyveromyces marxianus)可以带来显著的经济效益。然而,与酿酒酵母不同,这些酵母在没有氧气的情况下无法生长。本研究在恒化器中分析了马克斯克鲁维酵母和酿酒酵母对不同氧限制条件的反应。基因组和转录组分析、甾醇补充的生理响应和甾醇摄取测量结果表明,缺乏功能性甾醇摄取机制是马克斯克鲁维酵母需氧的关键因素。角鲨烯-四氢甲醇环化酶的异源表达使马克斯克鲁维酵母能够在无氧条件下合成甾醇类似物四氢甲醇。在短暂的氧限制条件下适应后,表达四氢甲醇的马克斯克鲁维酵母菌株能够在 45°C 以下的温度下以葡萄糖为碳源进行厌氧生长。这些结果为开发用于厌氧工业应用的耐热酵母菌株开辟了新的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验