Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
Innovative Genomics Institute, University of California, Berkeley, California, USA.
mBio. 2018 Sep 25;9(5):e01410-18. doi: 10.1128/mBio.01410-18.
Throughout history, the yeast has played a central role in human society due to its use in food production and more recently as a major industrial and model microorganism, because of the many genetic and genomic tools available to probe its biology. However, has proven difficult to engineer to expand the carbon sources it can utilize, the products it can make, and the harsh conditions it can tolerate in industrial applications. Other yeasts that could solve many of these problems remain difficult to manipulate genetically. Here, we engineered the thermotolerant yeast to create a new synthetic biology platform. Using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, we show that wild isolates of can be made heterothallic for sexual crossing. By breeding two of these mating-type engineered strains, we combined three complex traits-thermotolerance, lipid production, and facile transformation with exogenous DNA-into a single host. The ability to cross strains with relative ease, together with CRISPR-Cas9 genome editing, should enable engineering of isolates with promising lipid production at temperatures far exceeding those of other fungi under development for industrial applications. These results establish as a synthetic biology platform comparable to , with naturally more robust traits that hold potential for the industrial production of renewable chemicals. The yeast grows at high temperatures and on a wide range of carbon sources, making it a promising host for industrial biotechnology to produce renewable chemicals from plant biomass feedstocks. However, major genetic engineering limitations have kept this yeast from replacing the commonly used yeast in industrial applications. Here, we describe genetic tools for genome editing and breeding strains, which we use to create a new thermotolerant strain with promising fatty acid production. These results open the door to using as a versatile synthetic biology platform organism for industrial applications.
纵观历史,酵母由于其在食品生产中的应用,以及最近作为一种主要的工业和模式微生物的应用,在人类社会中发挥了核心作用,因为有许多可用的遗传和基因组工具来探究其生物学。然而,已经证明很难对其进行工程改造,以扩大其可利用的碳源、可制造的产物以及在工业应用中可耐受的恶劣条件。其他可以解决许多这些问题的酵母仍然难以进行基因操作。在这里,我们对耐热酵母进行了工程改造,创建了一个新的合成生物学平台。我们使用 CRISPR-Cas9(成簇的、规律间隔的短回文重复序列与 Cas9)介导的基因组编辑,表明野生分离株可以形成异核体,用于有性杂交。通过培育这两种交配型工程酵母菌株,我们将三种复杂的特性——耐热性、脂质生产和对外源 DNA 的易转化性——结合到一个单一的宿主中。相对容易地交叉酵母菌株的能力,加上 CRISPR-Cas9 基因组编辑,应该能够使具有良好脂质生产能力的酵母工程菌株在工业应用中开发的其他真菌远远超过其耐受温度的温度下进行工程改造。这些结果确立了作为一个与可比的合成生物学平台,具有自然更稳健的特性,有可能用于工业生产可再生化学品。酵母在高温下生长,并能利用广泛的碳源,使其成为一种很有前途的工业生物技术宿主,可从植物生物质原料生产可再生化学品。然而,主要的遗传工程限制使这种酵母无法在工业应用中取代常用的酵母。在这里,我们描述了用于基因组编辑和酵母菌株培育的遗传工具,我们利用这些工具来创建一种具有有前景的脂肪酸生产能力的新耐热菌株。这些结果为使用作为一种通用的工业应用合成生物学平台生物体打开了大门。