文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肝脏 mTORC1 信号传导作为其对进食和胰岛素代谢反应的一部分激活 ATF4。

Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin.

机构信息

Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Mol Metab. 2021 Nov;53:101309. doi: 10.1016/j.molmet.2021.101309. Epub 2021 Jul 23.


DOI:10.1016/j.molmet.2021.101309
PMID:34303878
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8368025/
Abstract

OBJECTIVE: The mechanistic target of rapamycin complex 1 (mTORC1) is dynamically regulated by fasting and feeding cycles in the liver to promote protein and lipid synthesis while suppressing autophagy. However, beyond these functions, the metabolic response of the liver to feeding and insulin signaling orchestrated by mTORC1 remains poorly defined. Here, we determine whether ATF4, a stress responsive transcription factor recently found to be independently regulated by mTORC1 signaling in proliferating cells, is responsive to hepatic mTORC1 signaling to alter hepatocyte metabolism. METHODS: ATF4 protein levels and expression of canonical gene targets were analyzed in the liver following fasting and physiological feeding in the presence or absence of the mTORC1 inhibitor, rapamycin. Primary hepatocytes from wild-type or liver-specific Atf4 knockout (LAtf4) mice were used to characterize the effects of insulin-stimulated mTORC1-ATF4 function on hepatocyte gene expression and metabolism. Both unbiased steady-state metabolomics and stable-isotope tracing methods were employed to define mTORC1 and ATF4-dependent metabolic changes. RNA-sequencing was used to determine global changes in feeding-induced transcripts in the livers of wild-type versus LAtf4 mice. RESULTS: We demonstrate that ATF4 and its metabolic gene targets are stimulated by mTORC1 signaling in the liver, in a hepatocyte-intrinsic manner by insulin in response to feeding. While we demonstrate that de novo purine and pyrimidine synthesis is stimulated by insulin through mTORC1 signaling in primary hepatocytes, this regulation was independent of ATF4. Metabolomics and metabolite tracing studies revealed that insulin-mTORC1-ATF4 signaling stimulates pathways of nonessential amino acid synthesis in primary hepatocytes, including those of alanine, aspartate, methionine, and cysteine, but not serine. CONCLUSIONS: The results demonstrate that ATF4 is a novel metabolic effector of mTORC1 in the liver, extending the molecular consequences of feeding and insulin-induced mTORC1 signaling in this key metabolic tissue to the control of amino acid metabolism.

摘要

目的:雷帕霉素复合物 1(mTORC1)的机械靶标在肝脏中通过禁食和进食周期动态调节,以促进蛋白质和脂质合成,同时抑制自噬。然而,除了这些功能之外,mTORC1 协调的肝脏对进食和胰岛素信号的代谢反应仍未得到明确界定。在这里,我们确定了应激反应转录因子 ATF4 是否对肝脏的 mTORC1 信号有反应,以改变肝细胞代谢,ATF4 最近被发现可独立于增殖细胞中的 mTORC1 信号进行调节。

方法:在存在或不存在 mTORC1 抑制剂雷帕霉素的情况下,分析禁食和生理进食后肝脏中 ATF4 蛋白水平和典型基因靶标的表达。使用野生型或肝脏特异性 Atf4 敲除(LAtf4)小鼠的原代肝细胞来表征胰岛素刺激的 mTORC1-ATF4 功能对肝细胞基因表达和代谢的影响。使用无偏稳态代谢组学和稳定同位素示踪方法来定义 mTORC1 和 ATF4 依赖性代谢变化。RNA 测序用于确定野生型与 LAtf4 小鼠肝脏中进食诱导转录物的全局变化。

结果:我们证明 ATF4 及其代谢基因靶标在肝脏中受到 mTORC1 信号的刺激,这种刺激是由胰岛素以肝细胞内在的方式在进食时引起的。虽然我们证明了从头嘌呤和嘧啶合成在原代肝细胞中通过 mTORC1 信号被胰岛素刺激,但这种调节与 ATF4 无关。代谢组学和代谢物示踪研究表明,胰岛素-mTORC1-ATF4 信号刺激了原代肝细胞中非必需氨基酸合成途径,包括丙氨酸、天冬氨酸、蛋氨酸和半胱氨酸,但不包括丝氨酸。

结论:这些结果表明 ATF4 是肝脏中 mTORC1 的新型代谢效应物,将进食和胰岛素诱导的 mTORC1 信号在这种关键代谢组织中的分子后果扩展到氨基酸代谢的控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/86e0f4f178d0/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/b3d69dd8ba21/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/f9b2e031d0a8/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/19adf03a64a7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/c00cb94579ca/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/a1d691304db8/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/86e0f4f178d0/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/b3d69dd8ba21/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/f9b2e031d0a8/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/19adf03a64a7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/c00cb94579ca/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/a1d691304db8/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8a/8368025/86e0f4f178d0/gr6.jpg

相似文献

[1]
Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin.

Mol Metab. 2021-11

[2]
Saturated phosphatidic acids induce mTORC1-driven integrated stress response contributing to glucolipotoxicity in hepatocytes.

Am J Physiol Gastrointest Liver Physiol. 2025-6-1

[3]
mTOR signaling regulates multiple metabolic pathways in human lung fibroblasts after TGF-β and in pulmonary fibrosis.

Am J Physiol Lung Cell Mol Physiol. 2025-2-1

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
Buddleoside alleviates nonalcoholic steatohepatitis by targeting the AMPK-TFEB signaling pathway.

Autophagy. 2025-6

[6]
Protein phosphatase 6 regulates metabolic dysfunction-associated steatohepatitis via the mTORC1 pathway.

J Hepatol. 2025-2-11

[7]
Increasing cellular NAD protects hepatocytes against palmitate-induced lipotoxicity by preventing PARP-1 inhibition and the mTORC1-p300 pathway activation.

Am J Physiol Cell Physiol. 2025-3-1

[8]
RAP1A suppresses hepatic steatosis by regulating amino acid-mediated mTORC1 activation.

JHEP Rep. 2024-12-18

[9]
mTORC1 and BMP-Smad1/5 regulation of serum-stimulated myotube hypertrophy: a role for autophagy.

Am J Physiol Cell Physiol. 2024-7-1

[10]
Constitutively active mTORC1 signaling modifies the skeletal muscle metabolome and lipidome response to exercise.

J Appl Physiol (1985). 2025-5-1

引用本文的文献

[1]
Emerging roles for integrated stress response signaling in homeostasis.

FEBS J. 2025-7-14

[2]
ATF4 in proximal tubules modulates kidney function and modifies the metabolome.

J Mol Med (Berl). 2025-6-21

[3]
AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth.

Dev Cell. 2025-5-30

[4]
Pre-cachectic changes in amino acid homeostasis precede activation of eIF2α signaling in the liver at the onset of C26 cancer-induced cachexia.

iScience. 2025-2-14

[5]
Everolimus in pituitary tumor: a review of preclinical and clinical evidence.

Front Endocrinol (Lausanne). 2024-12-16

[6]
Nutritional Supplements for Healthy Aging: A Critical Analysis Review.

Am J Lifestyle Med. 2024-4-9

[7]
AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth.

bioRxiv. 2024-9-23

[8]
Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights.

Cell Metab. 2024-11-5

[9]
Circadian regulation of macromolecular complex turnover and proteome renewal.

EMBO J. 2024-7

[10]
Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage disease in mouse models.

JCI Insight. 2024-3-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索