State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Sci Total Environ. 2021 Nov 25;797:149025. doi: 10.1016/j.scitotenv.2021.149025. Epub 2021 Jul 15.
Sulfur (S) dynamics in soils formed from granite remain poorly understood despite its importance as an essential plant macronutrient and component of soil organic matter. We used stable S isotope ratios to trace the sources and biogeochemical processes of S in four forest soil profiles developed on granite under contrasting climate conditions. The soil S is derived mainly from decomposing litter; no significant geogenic contribution to its content is noted as a result of the low S concentration of the granite (~ 5 μg/g). Colder/drier climate results in high organic S retention at the surface due to weak mineralization of organic S. Although warmer/wetter climate increases the S mineralization and leaching loss, SO adsorption is an important S retention process in the subsurface. The vertical distribution of S isotope compositions in the soil profiles across the four sites indicates (i) a downward increase in δS values in the upper profiles due to continuous mineralization of organic S with an occasional decrease in δS values in the subsurface due to dissimilatory sulfate reduction (DSR), (ii) constantly high δS values in the middle profiles due to the low water permeability, and (iii) a downward decrease in δS values in the low profiles due to increased contribution of bedrock with depth. Regardless of the variation in soil depth and climate, the total S concentration is proportional to the pedogenic Fe/Al minerals, suggesting the important role of secondary Fe/Al minerals in retaining S in soils. This study provides an integration and synthesis of controls of climatic and edaphic variables on S dynamics in forest soil profiles developed on granite.
尽管硫(S)是一种重要的植物大量营养素和土壤有机质的组成部分,但在花岗岩形成的土壤中,S 的动态变化仍知之甚少。我们使用稳定的 S 同位素比值来追踪四种在不同气候条件下形成于花岗岩上的森林土壤剖面中 S 的来源和生物地球化学过程。土壤 S 主要来源于分解的凋落物;由于花岗岩中 S 的浓度较低(~5μg/g),没有明显的地质成因对其含量的贡献。较冷/干燥的气候导致表面有机 S 的保留率较高,因为有机 S 的矿化作用较弱。尽管较温暖/潮湿的气候增加了 S 的矿化和淋失损失,但 SO 吸附是地下水中 S 的重要保留过程。四个地点的土壤剖面中 S 同位素组成的垂直分布表明:(i)由于有机 S 的不断矿化,上部剖面中的 δS 值逐渐增加,而在地下偶尔会由于异化硫酸盐还原(DSR)而导致 δS 值降低;(ii)由于低水渗透性,中部剖面中的 δS 值始终较高;(iii)由于随深度增加基岩的贡献增加,下部剖面中的 δS 值逐渐降低。无论土壤深度和气候的变化如何,总 S 浓度与成土 Fe/Al 矿物成正比,这表明次生 Fe/Al 矿物在土壤中保留 S 方面的重要作用。本研究综合了气候和土壤变量对花岗岩发育的森林土壤剖面中 S 动态变化的控制作用。