多种队列研究中精神障碍十种多基因风险评分方法的比较

A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts.

机构信息

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.

出版信息

Biol Psychiatry. 2021 Nov 1;90(9):611-620. doi: 10.1016/j.biopsych.2021.04.018. Epub 2021 May 4.

Abstract

BACKGROUND

Polygenic scores (PGSs), which assess the genetic risk of individuals for a disease, are calculated as a weighted count of risk alleles identified in genome-wide association studies. PGS methods differ in which DNA variants are included and the weights assigned to them; some require an independent tuning sample to help inform these choices. PGSs are evaluated in independent target cohorts with known disease status. Variability between target cohorts is observed in applications to real data sets, which could reflect a number of factors, e.g., phenotype definition or technical factors.

METHODS

The Psychiatric Genomics Consortium Working Groups for schizophrenia and major depressive disorder bring together many independently collected case-control cohorts. We used these resources (31,328 schizophrenia cases, 41,191 controls; 248,750 major depressive disorder cases, 563,184 controls) in repeated application of leave-one-cohort-out meta-analyses, each used to calculate and evaluate PGS in the left-out (target) cohort. Ten PGS methods (the baseline PC+T method and 9 methods that model genetic architecture more formally: SBLUP, LDpred2-Inf, LDpred-funct, LDpred2, Lassosum, PRS-CS, PRS-CS-auto, SBayesR, MegaPRS) were compared.

RESULTS

Compared with PC+T, the other 9 methods gave higher prediction statistics, MegaPRS, LDPred2, and SBayesR significantly so, explaining up to 9.2% variance in liability for schizophrenia across 30 target cohorts, an increase of 44%. For major depressive disorder across 26 target cohorts, these statistics were 3.5% and 59%, respectively.

CONCLUSIONS

Although the methods that more formally model genetic architecture have similar performance, MegaPRS, LDpred2, and SBayesR rank highest in most comparisons and are recommended in applications to psychiatric disorders.

摘要

背景

多基因评分(PGS)评估个体患某种疾病的遗传风险,它通过对全基因组关联研究中识别的风险等位基因进行加权计数来计算。PGS 方法在纳入的 DNA 变体和为其分配的权重方面有所不同;有些方法需要独立的调整样本来帮助确定这些选择。PGS 是在具有已知疾病状态的独立目标队列中进行评估的。在应用于真实数据集时,目标队列之间存在变异性,这可能反映出许多因素,例如表型定义或技术因素。

方法

精神疾病基因组学联合会(Psychiatric Genomics Consortium)的精神分裂症和重度抑郁症工作组汇集了许多独立收集的病例对照队列。我们使用这些资源(31328 例精神分裂症病例,41191 例对照;248750 例重度抑郁症病例,563184 例对照)进行了多次外留一队列荟萃分析,每次分析都用于计算和评估外留(目标)队列中的 PGS。比较了 10 种 PGS 方法(基线 PC+T 方法和 9 种更正式建模遗传结构的方法:SBLUP、LDpred2-Inf、LDpred-funct、LDpred2、Lassosum、PRS-CS、PRS-CS-auto、SBayesR、MegaPRS)。

结果

与 PC+T 相比,其他 9 种方法的预测统计值更高,MegaPRS、LDPred2 和 SBayesR 的统计值明显更高,在 30 个目标队列中解释了精神分裂症易感性的 9.2%的方差,增加了 44%。在 26 个目标队列中,这些统计值分别为 3.5%和 59%。

结论

尽管更正式地建模遗传结构的方法具有相似的性能,但在大多数比较中,MegaPRS、LDPred2 和 SBayesR 的排名最高,建议在精神疾病的应用中使用。

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索