Suppr超能文献

迟发性阿尔茨海默病的风险预测提示其具有寡基因结构。

Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.

Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.

出版信息

Nat Commun. 2020 Sep 23;11(1):4799. doi: 10.1038/s41467-020-18534-1.

Abstract

Genetic association studies have identified 44 common genome-wide significant risk loci for late-onset Alzheimer's disease (LOAD). However, LOAD genetic architecture and prediction are unclear. Here we estimate the optimal P-threshold (P) of a genetic risk score (GRS) for prediction of LOAD in three independent datasets comprising 676 cases and 35,675 family history proxy cases. We show that the discriminative ability of GRS in LOAD prediction is maximised when selecting a small number of SNPs. Both simulation results and direct estimation indicate that the number of causal common SNPs for LOAD may be less than 100, suggesting LOAD is more oligogenic than polygenic. The best GRS explains approximately 75% of SNP-heritability, and individuals in the top decile of GRS have ten-fold increased odds when compared to those in the bottom decile. In addition, 14 variants are identified that contribute to both LOAD risk and age at onset of LOAD.

摘要

遗传关联研究已经确定了 44 个与晚发性阿尔茨海默病(LOAD)相关的常见全基因组显著风险位点。然而,LOAD 的遗传结构和预测尚不清楚。在这里,我们在三个独立的数据集(包括 676 例病例和 35675 例家族史代理病例)中估计了遗传风险评分(GRS)用于 LOAD 预测的最佳 P 阈值(P)。我们表明,当选择少量 SNP 时,GRS 在 LOAD 预测中的区分能力最大。模拟结果和直接估计均表明,LOAD 的因果常见 SNP 数量可能少于 100,这表明 LOAD 更具寡基因性而非多基因性。最佳 GRS 解释了大约 75%的 SNP 遗传度,与处于 GRS 最低十分位数的个体相比,处于最高十分位数的个体的患病风险增加了十倍。此外,还确定了 14 个变体,它们既与 LOAD 风险相关,又与 LOAD 的发病年龄相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验