Suppr超能文献

Grand Challenges in Phage Biology.

作者信息

Ryu Sangryeol

机构信息

Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.

Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.

出版信息

Front Microbiol. 2021 Jul 8;12:715039. doi: 10.3389/fmicb.2021.715039. eCollection 2021.

Abstract
摘要

相似文献

1
Grand Challenges in Phage Biology.
Front Microbiol. 2021 Jul 8;12:715039. doi: 10.3389/fmicb.2021.715039. eCollection 2021.
4
The characteristic and potential therapeutic effect of isolated multidrug-resistant Acinetobacter baumannii lytic phage.
Ann Clin Microbiol Antimicrob. 2022 Jan 7;21(1):1. doi: 10.1186/s12941-022-00492-9.
5
Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures.
Microbiology (Reading). 2013 Aug;159(Pt 8):1597-1605. doi: 10.1099/mic.0.067611-0. Epub 2013 Jun 19.
7
Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection.
BMC Microbiol. 2011 Aug 31;11:195. doi: 10.1186/1471-2180-11-195.
8
A novel Bacillus cereus bacteriophage DLn1 and its endolysin as biocontrol agents against Bacillus cereus in milk.
Int J Food Microbiol. 2022 May 16;369:109615. doi: 10.1016/j.ijfoodmicro.2022.109615. Epub 2022 Mar 8.
9
Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope.
Microb Pathog. 2024 Jan;186:106467. doi: 10.1016/j.micpath.2023.106467. Epub 2023 Nov 28.
10
Isolation of Phage vB_KpnS_MK54 and Pathological Assessment of Endolysin in the Treatment of Pneumonia Mice Model.
Front Microbiol. 2022 Mar 21;13:854908. doi: 10.3389/fmicb.2022.854908. eCollection 2022.

引用本文的文献

1
Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria.
Heliyon. 2024 Jul 9;10(14):e34333. doi: 10.1016/j.heliyon.2024.e34333. eCollection 2024 Jul 30.

本文引用的文献

2
Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future.
BioDrugs. 2021 May;35(3):255-280. doi: 10.1007/s40259-021-00480-z. Epub 2021 Apr 21.
3
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications.
Biosens Bioelectron. 2021 Apr 1;177:112973. doi: 10.1016/j.bios.2021.112973. Epub 2021 Jan 6.
4
Unlocking the next generation of phage therapy: the key is in the receptors.
Curr Opin Biotechnol. 2021 Apr;68:115-123. doi: 10.1016/j.copbio.2020.10.002. Epub 2020 Nov 14.
5
Phages and their potential to modulate the microbiome and immunity.
Cell Mol Immunol. 2021 Apr;18(4):889-904. doi: 10.1038/s41423-020-00532-4. Epub 2020 Sep 8.
6
Advanced engineering of third-generation lysins and formulation strategies for clinical applications.
Crit Rev Microbiol. 2020 Sep;46(5):548-564. doi: 10.1080/1040841X.2020.1809346. Epub 2020 Sep 4.
7
Cell-Free Bacteriophage Genome Synthesis Using Low-Cost Sequence-Verified Array-Synthesized Oligonucleotides.
ACS Synth Biol. 2020 Jun 19;9(6):1376-1384. doi: 10.1021/acssynbio.0c00051. Epub 2020 May 22.
8
Phage diversity, genomics and phylogeny.
Nat Rev Microbiol. 2020 Mar;18(3):125-138. doi: 10.1038/s41579-019-0311-5. Epub 2020 Feb 3.
9
The arms race between bacteria and their phage foes.
Nature. 2020 Jan;577(7790):327-336. doi: 10.1038/s41586-019-1894-8. Epub 2020 Jan 15.
10
Gut Bacteriophage: Current Understanding and Challenges.
Front Endocrinol (Lausanne). 2019 Nov 29;10:784. doi: 10.3389/fendo.2019.00784. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验