Suppr超能文献

基于2020年3月3日至2021年3月29日的每日病例真实数据,对阿根廷2019 - 新型冠状病毒病例进行的案例研究,采用经典导数和分数阶导数。

A case study of 2019-nCOV cases in Argentina with the real data based on daily cases from March 03, 2020 to March 29, 2021 using classical and fractional derivatives.

作者信息

Kumar Pushpendra, Erturk Vedat Suat, Murillo-Arcila Marina, Banerjee Ramashis, Manickam A

机构信息

Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001 India.

Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey.

出版信息

Adv Differ Equ. 2021;2021(1):341. doi: 10.1186/s13662-021-03499-2. Epub 2021 Jul 20.

Abstract

In this study, our aim is to explore the dynamics of COVID-19 or 2019-nCOV in Argentina considering the parameter values based on the real data of this virus from  03, 2020 to  29, 2021 which is a data range of more than one complete year. We propose a Atangana-Baleanu type fractional-order model and simulate it by using predictor-corrector (P-C) method. First we introduce the biological nature of this virus in theoretical way and then formulate a mathematical model to define its dynamics. We use a well-known effective optimization scheme based on the renowned trust-region-reflective (TRR) method to perform the model calibration. We have plotted the real cases of COVID-19 and compared our integer-order model with the simulated data along with the calculation of basic reproductive number. Concerning fractional-order simulations, first we prove the existence and uniqueness of solution and then write the solution along with the stability of the given P-C method. A number of graphs at various fractional-order values are simulated to predict the future dynamics of the virus in Argentina which is the main contribution of this paper.

摘要

在本研究中,我们的目标是基于2020年3月至2021年29日该病毒的实际数据(数据范围超过一整年),考虑参数值,探索新冠病毒(COVID-19或2019-nCOV)在阿根廷的动态变化。我们提出了一种阿坦加纳-巴莱亚努型分数阶模型,并使用预测-校正(P-C)方法对其进行模拟。首先,我们从理论角度介绍这种病毒的生物学特性,然后建立一个数学模型来定义其动态变化。我们使用基于著名的信赖域反射(TRR)方法的一种有效优化方案来进行模型校准。我们绘制了新冠病毒的实际病例,并将我们的整数阶模型与模拟数据进行了比较,同时计算了基本再生数。关于分数阶模拟,首先我们证明了解的存在性和唯一性,然后写出解以及给定P-C方法的稳定性。模拟了多个不同分数阶值的图表,以预测该病毒在阿根廷的未来动态变化,这是本文的主要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/8290213/453ab702e666/13662_2021_3499_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验