Suppr超能文献

基于大数据分析的英语机器翻译混沌神经网络模型。

A Chaotic Neural Network Model for English Machine Translation Based on Big Data Analysis.

机构信息

School of Foreign Languages, Chengdu University of Information Technology, Chengdu 610036, China.

Chengdu Angke Technologies Co., Ltd., Chengdu 610000, China.

出版信息

Comput Intell Neurosci. 2021 Jul 2;2021:3274326. doi: 10.1155/2021/3274326. eCollection 2021.

Abstract

In this paper, the chaotic neural network model of big data analysis is used to conduct in-depth analysis and research on the English translation. Firstly, under the guidance of the translation strategy of text type theory, the translation generated by the machine translation system is edited after translation, and then professionals specializing in computer and translation are invited to confirm the translation. After that, the errors in the translations generated by the machine translation system are classified based on the Double Quantum Filter-Muttahida Quami Movement (DQF-MQM) error type classification framework. Due to the characteristics of the source text as an informative academic text, long and difficult sentences, passive voice, and terminology translation are the main causes of machine translation errors. In view of the rigorous logic of the source text and the fixed language steps, this research proposes corresponding post-translation editing strategies for each type of error. It is suggested that translators should maintain the logic of the source text by converting implicit connections into explicit connections, maintain the academic accuracy of the source text by adding subjects and adjusting the word order to deal with the passive voice, and deal with semitechnical terms by appropriately selecting word meanings in postediting. The errors of machine translation in computer science and technology text abstracts are systematically categorized, and the corresponding post-translation editing strategies are proposed to provide reference suggestions for translators in this field, to improve the quality of machine translation in this field.

摘要

本文使用大数据分析的混沌神经网络模型,对英文译文进行深入分析和研究。首先,在文本类型理论翻译策略的指导下,对机器翻译系统生成的译文进行译后编辑,然后邀请专门从事计算机和翻译工作的专业人员对译文进行确认。之后,根据 Double Quantum Filter-Muttahida Quami Movement (DQF-MQM) 错误类型分类框架,对机器翻译系统生成的译文错误进行分类。由于源文本具有信息性学术文本的特点,句子冗长且复杂、被动语态以及术语翻译是机器翻译错误的主要原因。针对源文本严谨的逻辑和固定的语言步骤,本研究针对每种错误类型提出了相应的译后编辑策略。建议译员通过将隐含连接转换为显式连接来保持源文本的逻辑,通过添加主语和调整词序来保持源文本的学术准确性,以及在译后编辑中通过适当选择词义来处理半技术术语。对计算机科学技术文本摘要中的机器翻译错误进行系统分类,并提出相应的译后编辑策略,为该领域的翻译人员提供参考建议,以提高该领域机器翻译的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4786/8270720/0108f297fed2/CIN2021-3274326.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验