Suppr超能文献

CHO化合物形成与分解反应的计算研究

Computational Investigation on the Formation and Decomposition Reactions of the CHO Compound.

作者信息

Van Pham Tien, Nguyen Tue Ngoc, Trang Hoang T Tue

机构信息

School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam.

Department of Chemistry, Hanoi Architectural University, Hanoi 100000, Vietnam.

出版信息

ACS Omega. 2021 Jul 2;6(28):17965-17976. doi: 10.1021/acsomega.1c01663. eCollection 2021 Jul 20.

Abstract

Gas-phase mechanism and kinetics of the formation and decomposition reactions of the CHO compound, a crucial intermediate of the atmospheric and combustion chemistry, were investigated using ab initio molecular orbital theory and the very expensive coupled-cluster CCSD(T)/CBS(T,Q,5)//B3LYP/6-311++G(3df,2p) method together with transition state theory and Rice-Ramsperger-Kassel-Macus kinetic predictions. The potential energy surface established shows that the CH + CO addition reaction has four main entrances in which CH + CO → (CHCCHCO) is the most energetically favorable channel. The calculated results revealed that the bimolecular rate constants are positively dependent on both temperatures ( = 300-2000 K) and pressures ( = 1-76,000 Torr). Of these values, the rate constant of the CH + CO → addition channel is dominant over the 300-2000 K temperature range, increasing from 1.53 × 10 to 1.04 × 10 cm molecule s with the branching ratio reducing from 62% to 44%. The predicted unimolecular rate coefficients in the ranges of = 300-2000 K and = 1-76,000 Torr revealed that the intermediate products , , and are rather unstable and would rapidly decompose back to the reactants (CH + CO), especially at high temperatures ( > 1000 K). The high-pressure limit rate constants for the CHO decomposition leading to products (CH + CO), (CHCCHCO + H), and (CHCO + CH) have been found to be in excellent agreement with the available literature values proposed by Tian et al. (, 756-773) without any adjustment from the ab initio calculations. Therefore, the predicted temperature- and pressure-dependent rate constants can be confidently used for modeling CO-related systems under atmospheric and combustion conditions.

摘要

采用从头算分子轨道理论以及极为昂贵的耦合簇CCSD(T)/CBS(T,Q,5)//B3LYP/6-311++G(3df,2p)方法,并结合过渡态理论和赖斯-拉姆齐格-卡塞尔-马库斯动力学预测,研究了大气化学和燃烧化学的关键中间体CHO化合物形成与分解反应的气相机理及动力学。所建立的势能面表明,CH + CO加成反应有四个主要入口,其中CH + CO → (CHCCHCO)是能量上最有利的通道。计算结果表明,双分子速率常数与温度( = 300 - 2000 K)和压力( = 1 - 76,000托)均呈正相关。在这些值中,CH + CO → 加成通道的 速率常数在300 - 2000 K温度范围内占主导,从1.53×10 增加到1.04×10 cm³分子⁻¹ s⁻¹,分支比从62%降至44%。在 = 300 - 2000 K和 = 1 - 76,000托范围内预测的单分子速率系数表明,中间产物 、 和 相当不稳定,会迅速分解回反应物(CH + CO),尤其是在高温( > 1000 K)时。已发现导致产物(CH + CO)、(CHCCHCO + H)和(CHCO + CH)的CHO分解的高压极限速率常数与田等人(, 756 - 773)提出的现有文献值非常吻合,无需从头算计算进行任何调整。因此,预测的与温度和压力相关的速率常数可放心用于模拟大气和燃烧条件下与CO相关的系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca25/8296000/c9ee6ddd548d/ao1c01663_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验