Department of Chemistry , Chung Yuan Christian University , Chung Li District , Taoyuan City , 32023 , Taiwan.
School of Chemical Engineering , Hanoi University of Science and Technology , Hanoi 100000 , Vietnam.
J Phys Chem A. 2019 Oct 3;123(39):8358-8364. doi: 10.1021/acs.jpca.9b05720. Epub 2019 Sep 18.
The mechanisms and kinetics of O(P,D) + OCS(XΣ) reactions have been studied by the high-level G2M(CC2) and CCSD(T)/6-311+G(3df)//B3LYP/6-311+G(3df) methods in conjunction with the transition-state theory and variational Rice-Ramsperger-Kassel-Marcus theory calculations. The result shows that the triplet surface proceeds directly by abstraction and substitution channels to produce SO(P) + CO(XΣ) and S(P) + CO(X Σ) by passing the barriers of 7.6 and 9.1 kcal·mol at the G2M(CC2)//B3LYP/6-311+G(3df) level, respectively, while two stable intermediates, LM1 (OSCO) and LM2 (SC(O)O), are formed barrierlessly from O(D) + OCS(XΣ) in the singlet surface, which lie at -40.5 and -50.1 kcal·mol relative to O(P) + OCS(XΣ) reactants and decompose to CO(XΣ) + SO(aΔ) and S(D) + CO(XΣ). LM1 and LM2 may also be produced by singlet-triplet surface crossings via MSX1 and MSX2; the predicted total rate constant for the O(P) + OCS(XΣ) reaction including the crossings, 9.2 × 10 exp(-5.18 kcal·mol/) cm molecule s, is in good agreement with available experimental data. The branching ratio of the CO product channel, 0.22-0.32, between 1200 and 1600 K, is also in excellent agreement with the value of 0.2-0.3 measured by Isshiki et al. ( 2464).
O(P,D) + OCS(XΣ) 反应的机理和动力学已通过高级 G2M(CC2) 和 CCSD(T)/6-311+G(3df)//B3LYP/6-311+G(3df) 方法与过渡态理论和变分 Rice-Ramsperger-Kassel-Marcus 理论计算相结合进行了研究。结果表明,三重态表面通过直接抽提和取代通道进行,在 G2M(CC2)//B3LYP/6-311+G(3df) 水平下分别通过 7.6 和 9.1 kcal·mol 的势垒,生成 SO(P) + CO(XΣ) 和 S(P) + CO(X Σ),而两个稳定的中间体 LM1 (OSCO) 和 LM2 (SC(O)O) 则在单重态表面上无势垒地从 O(D) + OCS(XΣ) 形成,其相对于 O(P) + OCS(XΣ) 反应物的自由能分别为-40.5 和-50.1 kcal·mol,并分解为 CO(XΣ) + SO(aΔ) 和 S(D) + CO(XΣ)。LM1 和 LM2 也可能通过 MSX1 和 MSX2 从单重态-三重态表面交叉生成;包括交叉在内的 O(P) + OCS(XΣ) 反应的总速率常数预测值为 9.2×10 exp(-5.18 kcal·mol/) cm 分子 s,与现有实验数据吻合较好。在 1200 到 1600 K 之间,CO 产物通道的分支比为 0.22-0.32,与 Isshiki 等人(2464)测量的 0.2-0.3 值非常吻合。