Suppr超能文献

用于痕量CHI捕获的铝基金属有机框架中孔表面功能的计算机模拟调谐

In Silico Tuning of the Pore Surface Functionality in Al-MOFs for Trace CHI Capture.

作者信息

Wu Xiaoyu, Chen Linjiang, Amigues Eric Jean, Wang Ruiyao, Pang Zhongfu, Ding Lifeng

机构信息

Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu 215123, China.

Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom.

出版信息

ACS Omega. 2021 Jul 12;6(28):18169-18177. doi: 10.1021/acsomega.1c02072. eCollection 2021 Jul 20.

Abstract

Aluminum (Al)-based metal-organic frameworks (MOFs) have been shown to have good stability toward γ irradiation, making them promising candidates for durable adsorbents for capturing volatile radioactive nuclides. In this work, we studied a series of existing Al-MOFs to capture trace radioactive organic iodide (ROI) from a gas composition (100 ppm CHI, 400 ppm CO, 21% O, and 78% N) resembling the off-gas composition from reprocessing the used nuclear fuel using Grand canonical Monte Carlo (GCMC) simulations and density functional theory (DFT) calculations. Based on the results and understanding established from studying the existing Al-MOFs, we proceed by functionalizing the top-performing CAU-11 with different functional groups to propose better MOFs for ROI capture. Our study suggests that extraordinary ROI adsorption and separation capability could be realized by -SOH functionalization in CAU-11. It was mainly owing to the joint effect of the enhanced pore surface polarity arising from -SOH functionalization and the μ-OH group of CAU-11.

摘要

基于铝(Al)的金属有机框架材料(MOFs)已被证明对γ辐射具有良好的稳定性,这使其有望成为捕获挥发性放射性核素的耐用吸附剂。在这项工作中,我们使用巨正则蒙特卡罗(GCMC)模拟和密度泛函理论(DFT)计算,研究了一系列现有的铝基金属有机框架材料,以从类似于用过的核燃料后处理废气成分的气体混合物(100 ppm CHI、400 ppm CO、21% O和78% N)中捕获痕量放射性有机碘(ROI)。基于对现有铝基金属有机框架材料研究得出的结果和认识,我们通过用不同官能团对表现最佳的CAU-11进行功能化处理,来提出更适合捕获ROI的金属有机框架材料。我们的研究表明,通过对CAU-11进行-SOH功能化处理,可以实现卓越的ROI吸附和分离能力。这主要归因于-SOH功能化导致的孔表面极性增强与CAU-11的μ-OH基团的共同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf3/8296563/42a65fb21b74/ao1c02072_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验