Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
Nat Commun. 2018 Apr 11;9(1):1378. doi: 10.1038/s41467-018-03892-8.
Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.
近年来,材料科学的最新进展使得数千种功能性吸附材料迅速涌现。这显然为它们的潜在应用创造了多种机会,但也带来了以下挑战:在成千上万的可能性中,如何确定特定应用最有前途的结构?在这里,我们展示了一个计算机辅助材料发现的案例,我们在金属有机骨架材料的计算筛选中完成了完整的循环,用于氧气存储,到在排名最高的结构中识别、合成和测量氧气吸附。我们引入了一种交互式可视化概念,用于分析五个维度中的 1000 多个独特的结构-性能图,并限定了 2932 种已合成结构在不同压力下结构特性与氧气吸附性能之间的关系。我们还报道了一种创世界纪录的储氧材料 UMCM-152,据我们所知,它比目前已知的最好材料多提供了 22.5%的氧气。