Suppr超能文献

基于立方布拉维晶格的 3D 打印结构材料

3D-Printed Architected Materials Inspired by Cubic Bravais Lattices.

机构信息

Department of Mechanical, Energy, Management and Transportation Engineering (DIME) Polytechnic School,University of Genoa, Via all'Opera Pia 15/A, Genova 16145, Italy.

Department of Mechanical Engineering, Politecnico di Milano via La Masa 1, Milano 20156, Italy.

出版信息

ACS Biomater Sci Eng. 2023 Jul 10;9(7):3935-3944. doi: 10.1021/acsbiomaterials.0c01708. Epub 2021 Jul 26.

Abstract

Learning from Nature and leveraging 3D printing, mechanical testing, and numerical modeling, this study aims to provide a deeper understanding of the structure-property relationship of crystal-lattice-inspired materials, starting from the study of single unit cells inspired by the cubic Bravais crystal lattices. In particular, here we study the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) lattices. Mechanical testing of 3D-printed structures is used to investigate the influence of different printing parameters. Numerical models, validated based on experimental testing carried out on single unit cells and embedding manufacturing-induced defects, are used to derive the scaling laws for each studied topology, thus providing guidelines for materials selection and design, and the basis for future homogenization and optimization studies. We observe no clear effect of the layer thickness on the mechanical properties of both bulk material and lattice structures. Instead, the printing direction effect, negligible in solid samples, becomes relevant in lattice structures, yielding different stiffnesses of struts and nodes. This phenomenon is accounted for in the proposed simulation framework. The numerical models of large arrays, used to define the scaling laws, suggest that the chosen topologies have a mainly stretching-dominated behavior─a hallmark of structurally efficient structures─where the modulus scales linearly with the relative density. By looking ahead, mimicking the characteristic microscale structure of crystalline materials will allow replicating the typical behavior of crystals at a larger scale, combining the hardening traits of metallurgy with the characteristic behavior of polymers and the advantage of lightweight architected structures, leading to novel materials with multiple functions.

摘要

受自然启发,结合 3D 打印、力学测试和数值建模,本研究旨在深入了解晶格启发材料的结构-性能关系,从研究受立方布拉维晶格启发的单一单元开始。具体来说,我们研究了简单立方(SC)、体心立方(BCC)和面心立方(FCC)晶格。通过对 3D 打印结构进行力学测试,研究了不同打印参数的影响。基于对单个单元进行的实验测试和嵌入制造诱导缺陷的数值模型进行验证,为每种研究拓扑结构推导出了标度律,从而为材料选择和设计提供了指导,并为未来的均匀化和优化研究奠定了基础。我们没有观察到层厚对块状材料和晶格结构机械性能的明显影响。相反,在实体样品中可以忽略不计的打印方向效应在晶格结构中变得相关,导致支柱和节点的刚度不同。这种现象在提出的模拟框架中得到了考虑。用于定义标度律的大型阵列的数值模型表明,所选择的拓扑结构主要表现为拉伸主导行为——这是结构高效结构的标志——其中模量与相对密度呈线性关系。展望未来,模拟晶体材料的特征微结构将允许在更大的尺度上复制晶体的典型行为,将冶金的硬化特性与聚合物的特征行为和轻质架构结构的优势结合起来,从而创造出具有多种功能的新型材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5457/10336745/0d1a7106f95b/ab0c01708_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验