Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
Orthod Craniofac Res. 2021 Dec;24 Suppl 2(Suppl 2):134-143. doi: 10.1111/ocr.12521. Epub 2021 Aug 24.
Palatal shape contains a lot of information that is of clinical interest. Moreover, palatal shape analysis can be used to guide or evaluate orthodontic treatments. A statistical shape model (SSM) is a tool that, by means of dimensionality reduction, aims at compactly modeling the variance of complex shapes for efficient analysis. In this report, we evaluate several competing approaches to constructing SSMs for the human palate.
This study used a sample comprising digitized 3D maxillary dental casts from 1,324 individuals.
Principal component analysis (PCA) and autoencoders (AE) are popular approaches to construct SSMs. PCA is a dimension reduction technique that provides a compact description of shapes by uncorrelated variables. AEs are situated in the field of deep learning and provide a non-linear framework for dimension reduction. This work introduces the singular autoencoder (SAE), a hybrid approach that combines the most important properties of PCA and AEs. We assess the performance of the SAE using standard evaluation tools for SSMs, including accuracy, generalization, and specificity.
We found that the SAE obtains equivalent results to PCA and AEs for all evaluation metrics. SAE scores were found to be uncorrelated and provided an optimally compact representation of the shapes.
We conclude that the SAE is a promising tool for 3D palatal shape analysis, which effectively combines the power of PCA with the flexibility of deep learning. This opens future AI driven applications of shape analysis in orthodontics and other related clinical disciplines.
腭形包含许多具有临床意义的信息。此外,腭形分析可用于指导或评估正畸治疗。统计形状模型(SSM)是一种工具,通过降维,旨在紧凑地对复杂形状的方差进行建模,以实现高效分析。在本报告中,我们评估了几种构建人类腭部 SSM 的竞争方法。
本研究使用了一个样本,其中包含 1324 个人的数字化 3D 上颌牙列模型。
主成分分析(PCA)和自动编码器(AE)是构建 SSM 的常用方法。PCA 是一种降维技术,通过不相关的变量为形状提供紧凑的描述。AE 位于深度学习领域,为降维提供了一个非线性框架。本工作引入了奇异自动编码器(SAE),这是一种将 PCA 和 AE 的最重要特性相结合的混合方法。我们使用 SSM 的标准评估工具评估 SAE 的性能,包括准确性、泛化性和特异性。
我们发现 SAE 在所有评估指标上都能获得与 PCA 和 AE 相当的结果。SAE 得分被发现是不相关的,并为形状提供了最佳的紧凑表示。
我们得出结论,SAE 是一种很有前途的 3D 腭形分析工具,它有效地结合了 PCA 的强大功能和深度学习的灵活性。这为正畸学和其他相关临床学科中的形状分析的未来 AI 驱动应用开辟了道路。