Suppr超能文献

运用 3D 形态分析和几何深度学习探索腭部和牙齿形态变化。

Exploring palatal and dental shape variation with 3D shape analysis and geometric deep learning.

机构信息

Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.

Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.

出版信息

Orthod Craniofac Res. 2021 Dec;24 Suppl 2(Suppl 2):134-143. doi: 10.1111/ocr.12521. Epub 2021 Aug 24.

Abstract

OBJECTIVES

Palatal shape contains a lot of information that is of clinical interest. Moreover, palatal shape analysis can be used to guide or evaluate orthodontic treatments. A statistical shape model (SSM) is a tool that, by means of dimensionality reduction, aims at compactly modeling the variance of complex shapes for efficient analysis. In this report, we evaluate several competing approaches to constructing SSMs for the human palate.

SETTING AND SAMPLE POPULATION

This study used a sample comprising digitized 3D maxillary dental casts from 1,324 individuals.

MATERIALS AND METHODS

Principal component analysis (PCA) and autoencoders (AE) are popular approaches to construct SSMs. PCA is a dimension reduction technique that provides a compact description of shapes by uncorrelated variables. AEs are situated in the field of deep learning and provide a non-linear framework for dimension reduction. This work introduces the singular autoencoder (SAE), a hybrid approach that combines the most important properties of PCA and AEs. We assess the performance of the SAE using standard evaluation tools for SSMs, including accuracy, generalization, and specificity.

RESULTS

We found that the SAE obtains equivalent results to PCA and AEs for all evaluation metrics. SAE scores were found to be uncorrelated and provided an optimally compact representation of the shapes.

CONCLUSION

We conclude that the SAE is a promising tool for 3D palatal shape analysis, which effectively combines the power of PCA with the flexibility of deep learning. This opens future AI driven applications of shape analysis in orthodontics and other related clinical disciplines.

摘要

目的

腭形包含许多具有临床意义的信息。此外,腭形分析可用于指导或评估正畸治疗。统计形状模型(SSM)是一种工具,通过降维,旨在紧凑地对复杂形状的方差进行建模,以实现高效分析。在本报告中,我们评估了几种构建人类腭部 SSM 的竞争方法。

设置和样本人群

本研究使用了一个样本,其中包含 1324 个人的数字化 3D 上颌牙列模型。

材料和方法

主成分分析(PCA)和自动编码器(AE)是构建 SSM 的常用方法。PCA 是一种降维技术,通过不相关的变量为形状提供紧凑的描述。AE 位于深度学习领域,为降维提供了一个非线性框架。本工作引入了奇异自动编码器(SAE),这是一种将 PCA 和 AE 的最重要特性相结合的混合方法。我们使用 SSM 的标准评估工具评估 SAE 的性能,包括准确性、泛化性和特异性。

结果

我们发现 SAE 在所有评估指标上都能获得与 PCA 和 AE 相当的结果。SAE 得分被发现是不相关的,并为形状提供了最佳的紧凑表示。

结论

我们得出结论,SAE 是一种很有前途的 3D 腭形分析工具,它有效地结合了 PCA 的强大功能和深度学习的灵活性。这为正畸学和其他相关临床学科中的形状分析的未来 AI 驱动应用开辟了道路。

相似文献

1
Exploring palatal and dental shape variation with 3D shape analysis and geometric deep learning.
Orthod Craniofac Res. 2021 Dec;24 Suppl 2(Suppl 2):134-143. doi: 10.1111/ocr.12521. Epub 2021 Aug 24.
2
Automated landmarking for palatal shape analysis using geometric deep learning.
Orthod Craniofac Res. 2021 Dec;24 Suppl 2(Suppl 2):144-152. doi: 10.1111/ocr.12513. Epub 2021 Jul 21.
3
4
Measuring 3D shape in orthodontics through geometric morphometrics.
Prog Orthod. 2017 Dec 1;18(1):38. doi: 10.1186/s40510-017-0194-9.
5
3D evaluation of maxillary morphology in Marfan growing subjects: a controlled clinical study.
Prog Orthod. 2019 Mar 18;20(1):12. doi: 10.1186/s40510-019-0264-2.
9
Principal polynomial shape analysis: A non-linear tool for statistical shape modeling.
Comput Methods Programs Biomed. 2022 Jun;220:106812. doi: 10.1016/j.cmpb.2022.106812. Epub 2022 Apr 12.

引用本文的文献

1
A 3D Clinical Face Phenotype Space of Genetic Syndromes Using a Triplet-Based Singular Geometric Autoencoder.
IEEE Access. 2025;13:7258-7272. doi: 10.1109/access.2024.3524428. Epub 2024 Dec 30.
2
Mapping genes for human face shape: Exploration of univariate phenotyping strategies.
PLoS Comput Biol. 2024 Dec 2;20(12):e1012617. doi: 10.1371/journal.pcbi.1012617. eCollection 2024 Dec.
4
Personalized statistical modeling of soft tissue structures in the knee.
Front Bioeng Biotechnol. 2023 Mar 8;11:1055860. doi: 10.3389/fbioe.2023.1055860. eCollection 2023.
6
Hybrid autoencoder with orthogonal latent space for robust population structure inference.
Sci Rep. 2023 Feb 14;13(1):2612. doi: 10.1038/s41598-023-28759-x.
7
Wear patterns in knee OA correlate with native limb geometry.
Front Bioeng Biotechnol. 2022 Nov 18;10:1042441. doi: 10.3389/fbioe.2022.1042441. eCollection 2022.

本文引用的文献

1
Ischiofemoral impingement: the evolutionary cost of pelvic obstetric adaptation.
J Hip Preserv Surg. 2021 Feb 8;7(4):677-687. doi: 10.1093/jhps/hnab004. eCollection 2020 Dec.
2
Morphometric analysis of palatal rugae in different malocclusions.
J Orofac Orthop. 2021 Mar;82(2):111-120. doi: 10.1007/s00056-020-00256-0. Epub 2020 Oct 27.
3
Determination of pre-arthropathy scapular anatomy with a statistical shape model: part I-rotator cuff tear arthropathy.
J Shoulder Elbow Surg. 2021 May;30(5):1095-1106. doi: 10.1016/j.jse.2020.07.043. Epub 2020 Aug 19.
4
Statistical Shape Modeling of Skeletal Anatomy for Sex Discrimination: Their Training Size, Sexual Dimorphism, and Asymmetry.
Front Bioeng Biotechnol. 2019 Nov 1;7:302. doi: 10.3389/fbioe.2019.00302. eCollection 2019.
5
An automated workflow based on hip shape improves personalized risk prediction for hip osteoarthritis in the CHECK study.
Osteoarthritis Cartilage. 2020 Jan;28(1):62-70. doi: 10.1016/j.joca.2019.09.005. Epub 2019 Oct 8.
6
Statistical Shape Models: Understanding and Mastering Variation in Anatomy.
Adv Exp Med Biol. 2019;1156:67-84. doi: 10.1007/978-3-030-19385-0_5.
7
MeshMonk: Open-source large-scale intensive 3D phenotyping.
Sci Rep. 2019 Apr 15;9(1):6085. doi: 10.1038/s41598-019-42533-y.
10
The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research.
PLoS One. 2017 Dec 7;12(12):e0186754. doi: 10.1371/journal.pone.0186754. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验