Suppr超能文献

膝关节软组织结构的个性化统计建模

Personalized statistical modeling of soft tissue structures in the knee.

作者信息

Van Oevelen A, Duquesne K, Peiffer M, Grammens J, Burssens A, Chevalier A, Steenackers G, Victor J, Audenaert E

机构信息

Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium.

Department of Human Structure and Repair, Ghent University, Ghent, Belgium.

出版信息

Front Bioeng Biotechnol. 2023 Mar 8;11:1055860. doi: 10.3389/fbioe.2023.1055860. eCollection 2023.

Abstract

As measurements of knee joint contact forces remain challenging, computational musculoskeletal modeling has been popularized as an encouraging solution for non-invasive estimation of joint mechanical loading. Computational musculoskeletal modeling typically relies on laborious manual segmentation as it requires reliable osseous and soft tissue geometry. To improve on feasibility and accuracy of patient-specific geometry predictions, a generic computational approach that can easily be scaled, morphed and fitted to patient-specific knee joint anatomy is presented. A personalized prediction algorithm was established to derive soft tissue geometry of the knee, originating solely from skeletal anatomy. Based on a MRI dataset ( = 53), manual identification of soft-tissue anatomy and landmarks served as input for our model by use of geometric morphometrics. Topographic distance maps were generated for cartilage thickness predictions. Meniscal modeling relied on wrapping a triangular geometry with varying height and width from the anterior to the posterior root. Elastic mesh wrapping was applied for ligamentous and patellar tendon path modeling. Leave-one-out validation experiments were conducted for accuracy assessment. The Root Mean Square Error (RMSE) for the cartilage layers of the medial tibial plateau, the lateral tibial plateau, the femur and the patella equaled respectively 0.32 mm (range 0.14-0.48), 0.35 mm (range 0.16-0.53), 0.39 mm (range 0.15-0.80) and 0.75 mm (range 0.16-1.11). Similarly, the RMSE equaled respectively 1.16 mm (range 0.99-1.59), 0.91 mm (0.75-1.33), 2.93 mm (range 1.85-4.66) and 2.04 mm (1.88-3.29), calculated over the course of the anterior cruciate ligament, posterior cruciate ligament, the medial and the lateral meniscus. A methodological workflow is presented for patient-specific, morphological knee joint modeling that avoids laborious segmentation. By allowing to accurately predict personalized geometry this method has the potential for generating large (virtual) sample sizes applicable for biomechanical research and improving personalized, computer-assisted medicine.

摘要

由于膝关节接触力的测量仍然具有挑战性,计算肌肉骨骼建模作为一种用于无创估计关节机械负荷的令人鼓舞的解决方案而得到普及。计算肌肉骨骼建模通常依赖于费力的手动分割,因为它需要可靠的骨骼和软组织几何形状。为了提高患者特异性几何预测的可行性和准确性,提出了一种可以轻松缩放、变形并拟合到患者特异性膝关节解剖结构的通用计算方法。建立了一种个性化预测算法,以仅从骨骼解剖结构得出膝关节的软组织几何形状。基于一个MRI数据集(n = 53),通过使用几何形态计量学,手动识别软组织解剖结构和地标作为我们模型的输入。生成地形距离图用于软骨厚度预测。半月板建模依赖于用从前根到后根高度和宽度变化的三角形几何形状进行包裹。弹性网格包裹用于韧带和髌腱路径建模。进行留一法验证实验以进行准确性评估。内侧胫骨平台、外侧胫骨平台、股骨和髌骨软骨层的均方根误差(RMSE)分别为0.32毫米(范围0.14 - 0.48)、0.35毫米(范围0.16 - 0.53)、0.39毫米(范围0.15 - 0.80)和0.75毫米(范围0.16 - 1.11)。同样,在前交叉韧带、后交叉韧带、内侧和外侧半月板的过程中计算得出的RMSE分别为1.16毫米(范围0.99 - 1.59)、0.91毫米(0.75 - 1.33)、2.93毫米(范围1.85 - 4.66)和2.04毫米(1.88 - 3.29)。提出了一种用于患者特异性形态膝关节建模的方法工作流程,该流程避免了费力的分割。通过允许准确预测个性化几何形状,该方法具有生成适用于生物力学研究的大(虚拟)样本量并改善个性化计算机辅助医学的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fead/10031007/b1d6551b7d30/fbioe-11-1055860-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验