Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation.
Faculty of Photonics and Optical Information, Center of Information Optical Technologies ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation.
ACS Appl Mater Interfaces. 2021 Aug 11;13(31):36737-36746. doi: 10.1021/acsami.1c05252. Epub 2021 Jul 27.
Real-time temperature monitoring within biological objects is a key fundamental issue for understanding the heating process and performing remote-controlled release of bioactive compounds upon laser irradiation. The lack of accurate thermal control significantly limits the translation of optical laser techniques into nanomedicine. Here, we design and develop hybrid (complex) carriers based on multilayered capsules combined with nanodiamonds (NV centers) as nanothermometers and gold nanoparticles (Au NPs) as nanoheaters to estimate an effective laser-induced temperature rise required for capsule rupture and further release of cargo molecules outside and inside cancerous (B16-F10) cells. We integrate both elements (NV centers and Au NPs) in the capsule structure using two strategies: (i) loading inside the capsule's cavity () and incorporating them inside the capsule's wall (). Theoretically and experimentally, we show the highest and lowest heat release from capsule samples ( or ) under laser irradiation depending on the Au NP arrangement within the capsule. Applying NV centers, we measure the local temperature of capsule rupture inside and outside the cells, which is determined to be 128 ± 1.12 °C. Finally, the developed hybrid containers can be used to perform the photoinduced release of cargo molecules with simultaneous real-time temperature monitoring inside the cells.
实时监测生物体内的温度对于理解加热过程以及在激光照射下实现生物活性化合物的远程控制释放至关重要。缺乏准确的热控极大地限制了光学激光技术在纳米医学中的转化。在这里,我们设计并开发了基于多层胶囊的混合(复合)载体,该载体结合了纳米金刚石(NV 中心)作为纳米温度计和金纳米颗粒(Au NPs)作为纳米加热器,以估算胶囊破裂所需的有效激光诱导升温,从而进一步将货物分子释放到癌细胞(B16-F10)内外。我们使用两种策略将这两个元素(NV 中心和 Au NPs)集成到胶囊结构中:(i)装载在胶囊腔体内()和将它们掺入胶囊壁内()。从理论和实验上,我们展示了在激光照射下,根据胶囊内 Au NP 的排列方式,胶囊样品(或)的释放热量最高和最低。利用 NV 中心,我们测量了细胞内外胶囊破裂时的局部温度,确定其为 128±1.12°C。最后,开发的混合容器可用于在细胞内进行同时实时温度监测的货物分子的光诱导释放。