Suppr超能文献

经常与适应捕食相关的基因组区域包括基因家族扩展成员。

Genomic regions associated with adaptation to predation in often include members of expanded gene families.

机构信息

MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, People's Republic of China.

College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia.

出版信息

Proc Biol Sci. 2021 Jul 28;288(1955):20210803. doi: 10.1098/rspb.2021.0803.

Abstract

Predation has been a major driver of the evolution of prey species, which consequently develop antipredator adaptations. However, little is known about the genetic basis underpinning the adaptation of prey to intensive predation. Here, we describe a high-quality chromosome-level genome assembly (approx. 145 Mb, scaffold N50 11.45 Mb) of , a primary forage for many fish species. Transcriptional profiling of exposed to fish kairomone revealed that this cladoceran responds to predation risk through regulating activities of Wnt signalling, cuticle pattern formation, cell cycle regulation and anti-apoptosis pathways. Genes differentially expressed in response to predation risk are more likely to be members of expanded families. Our results suggest that expansions of multiple gene families associated with chemoreception and vision allow to enhance detection of predation risk, and that expansions of those associated with detoxification and cuticle formation allow to mount an efficient response to perceived predation risk. This study increases our understanding of the molecular basis of prey defences, being important evolutionary adaptations playing a stabilizing role in community dynamics.

摘要

捕食一直是猎物物种进化的主要驱动力,因此猎物会进化出抗捕食的适应能力。然而,对于猎物如何适应密集捕食的遗传基础,我们知之甚少。在这里,我们描述了一种高质量的染色体水平基因组组装(约 145Mb,支架 N50 为 11.45Mb),它是许多鱼类物种的主要饲料。对暴露在鱼类信息素下的进行转录谱分析表明,这种枝角类动物通过调节 Wnt 信号通路、表皮模式形成、细胞周期调控和抗细胞凋亡途径的活性来应对捕食风险。对捕食风险做出响应的差异表达基因更有可能是扩展家族的成员。我们的研究结果表明,与化学感觉和视觉相关的多个基因家族的扩张使能够增强对捕食风险的检测,而与解毒和表皮形成相关的那些家族的扩张使能够对感知到的捕食风险做出有效的反应。这项研究增加了我们对猎物防御分子基础的理解,这些防御是重要的进化适应,在群落动态中起着稳定的作用。

相似文献

1
Genomic regions associated with adaptation to predation in often include members of expanded gene families.
Proc Biol Sci. 2021 Jul 28;288(1955):20210803. doi: 10.1098/rspb.2021.0803.
2
Toxic Microcystis aeruginosa alters the resource allocation in Daphnia mitsukuri responding to fish predation cues.
Environ Pollut. 2021 Jun 1;278:116918. doi: 10.1016/j.envpol.2021.116918. Epub 2021 Mar 10.
3
The role of prey and predator identity in eliciting inducible defenses of Daphnia.
Ecology. 2023 May;104(5):e4033. doi: 10.1002/ecy.4033. Epub 2023 Apr 3.
4
Responses to predation pressure involve similar sets of genes in two divergent species of Daphnia.
J Anim Ecol. 2023 Sep;92(9):1743-1758. doi: 10.1111/1365-2656.13969. Epub 2023 Jun 19.
7
Transcriptional profiling of predator-induced phenotypic plasticity in Daphnia pulex.
Front Zool. 2015 Jul 25;12:18. doi: 10.1186/s12983-015-0109-x. eCollection 2015.
9
Interpopulation variation in a fish predator drives evolutionary divergence in prey in lakes.
Proc Biol Sci. 2011 Sep 7;278(1718):2628-37. doi: 10.1098/rspb.2010.2634. Epub 2011 Jan 26.

引用本文的文献

1
Patterns of Gene Family Evolution and Selection Across .
Ecol Evol. 2025 May 24;15(5):e71453. doi: 10.1002/ece3.71453. eCollection 2025 May.
2
Adaptation in a keystone grazer under novel predation pressure.
Proc Biol Sci. 2025 Jan;292(2039):20241935. doi: 10.1098/rspb.2024.1935. Epub 2025 Jan 22.
4
RNA-seq analysis reveals changes in mRNA expression during development in Daphnia mitsukuri.
BMC Genomics. 2024 Mar 21;25(1):302. doi: 10.1186/s12864-024-10210-8.
6
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria.
Dev Biol. 2022 Dec;492:187-199. doi: 10.1016/j.ydbio.2022.10.011. Epub 2022 Oct 19.
7
Phenotypic and transcriptional response of Daphnia pulicaria to the combined effects of temperature and predation.
PLoS One. 2022 Jul 14;17(7):e0265103. doi: 10.1371/journal.pone.0265103. eCollection 2022.

本文引用的文献

1
Insights into the genetic basis of predator-induced response in .
Ecol Evol. 2020 Oct 18;10(23):13095-13108. doi: 10.1002/ece3.6899. eCollection 2020 Dec.
2
OrthoFinder: phylogenetic orthology inference for comparative genomics.
Genome Biol. 2019 Nov 14;20(1):238. doi: 10.1186/s13059-019-1832-y.
3
The Phylogeny and Evolutionary History of Arthropods.
Curr Biol. 2019 Jun 17;29(12):R592-R602. doi: 10.1016/j.cub.2019.04.057.
4
5
Penaeid shrimp genome provides insights into benthic adaptation and frequent molting.
Nat Commun. 2019 Jan 21;10(1):356. doi: 10.1038/s41467-018-08197-4.
7
Lineage diversity and reproductive modes of the Daphnia pulex group in Chinese lakes and reservoirs.
Mol Phylogenet Evol. 2019 Jan;130:424-433. doi: 10.1016/j.ympev.2018.08.004. Epub 2018 Aug 9.
10
Oxidative Stress: Harms and Benefits for Human Health.
Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. Epub 2017 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验