Suppr超能文献

数据整合方法,用以解决物种分布的区域预测中空间生态位收缩效应的问题。

Data integration methods to account for spatial niche truncation effects in regional projections of species distribution.

机构信息

Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, CH-1015, Switzerland.

Institute of Earth Surface Dynamics, University of Lausanne, Géopolis, Lausanne, CH-1015, Switzerland.

出版信息

Ecol Appl. 2021 Oct;31(7):e02427. doi: 10.1002/eap.2427. Epub 2021 Aug 31.

Abstract

Many species distribution models (SDMs) are built with precise but geographically restricted presence-absence data sets (e.g., a country) where only a subset of the environmental conditions experienced by a species across its range is considered (i.e., spatial niche truncation). This type of truncation is worrisome because it can lead to incorrect predictions e.g., when projecting to future climatic conditions belonging to the species niche but unavailable in the calibration area. Data from citizen-science programs, species range maps or atlases covering the full species range can be used to capture those parts of the species' niche that are missing regionally. However, these data usually are too coarse or too biased to support regional management. Here, we aim to (1) demonstrate how varying degrees of spatial niche truncation affect SDMs projections when calibrated with climatically truncated regional data sets and (2) test the performance of different methods to harness information from larger-scale data sets presenting different spatial resolutions to solve the spatial niche truncation problem. We used simulations to compare the performance of the different methods, and applied them to a real data set to predict the future distribution of a plant species (Potentilla aurea) in Switzerland. SDMs calibrated with geographically restricted data sets expectedly provided biased predictions when projected outside the calibration area or time period. Approaches integrating information from larger-scale data sets using hierarchical data integration methods usually reduced this bias. However, their performance varied depending on the level of spatial niche truncation and how data were combined. Interestingly, while some methods (e.g., data pooling, downscaling) performed well on both simulated and real data, others (e.g., those based on a Poisson point process) performed better on real data, indicating a dependency of model performance on the simulation process (e.g., shape of simulated response curves). Based on our results, we recommend to use different data integration methods and, whenever possible, to make a choice depending on model performance. In any case, an ensemble modeling approach can be used to account for uncertainty in how niche truncation is accounted for and identify areas where similarities/dissimilarities exist across methods.

摘要

许多物种分布模型(SDM)都是使用精确但地理上受限的存在-缺失数据集(例如一个国家)构建的,这些数据集仅考虑了物种在其分布范围内经历的环境条件的一个子集(即空间生态位截断)。这种类型的截断令人担忧,因为它可能导致不正确的预测,例如,当将预测投影到物种生态位所属的未来气候条件但在校准区域中不可用时。可以使用公民科学计划、物种范围图或涵盖物种全范围的地图集的数据来捕获物种生态位中在区域上缺失的部分。然而,这些数据通常太粗糙或存在偏差,无法支持区域管理。在这里,我们旨在(1)展示在使用气候截断的区域数据集进行校准的情况下,不同程度的空间生态位截断如何影响 SDM 预测,(2)测试利用更大规模数据集的不同方法来解决空间生态位截断问题的性能。我们使用模拟来比较不同方法的性能,并将其应用于实际数据集以预测瑞士一种植物物种(Potentilla aurea)的未来分布。使用地理上受限的数据集进行校准的 SDM 预计在预测校准区域或时间段之外时会提供有偏差的预测。使用层次数据集成方法整合来自更大规模数据集的信息的方法通常可以减少这种偏差。然而,它们的性能取决于空间生态位截断的程度以及数据的组合方式。有趣的是,虽然一些方法(例如,数据池化、下采样)在模拟和实际数据上都表现良好,但其他方法(例如基于泊松点过程的方法)在实际数据上表现更好,这表明模型性能取决于模拟过程(例如,模拟响应曲线的形状)。基于我们的结果,我们建议使用不同的数据集成方法,并在可能的情况下根据模型性能进行选择。在任何情况下,都可以使用集成建模方法来考虑生态位截断的不确定性,并确定方法之间存在相似性/差异性的区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验