El-Gabbas Ahmed, Dormann Carsten F
Department of Biometry and Environmental System Analysis University of Freiburg Freiburg Germany.
Ecol Evol. 2018 Jan 24;8(4):2196-2206. doi: 10.1002/ece3.3834. eCollection 2018 Feb.
Species distribution modeling (SDM) is an essential method in ecology and conservation. SDMs are often calibrated within one country's borders, typically along a limited environmental gradient with biased and incomplete data, making the quality of these models questionable. In this study, we evaluated how adequate are national presence-only data for calibrating regional SDMs. We trained SDMs for Egyptian bat species at two different scales: only within Egypt and at a species-specific global extent. We used two modeling algorithms: Maxent and elastic net, both under the point-process modeling framework. For each modeling algorithm, we measured the congruence of the predictions of global and regional models for Egypt, assuming that the lower the congruence, the lower the appropriateness of the Egyptian dataset to describe the species' niche. We inspected the effect of incorporating predictions from global models as additional predictor ("prior") to regional models, and quantified the improvement in terms of AUC and the congruence between regional models run with and without priors. Moreover, we analyzed predictive performance improvements after correction for sampling bias at both scales. On average, predictions from global and regional models in Egypt only weakly concur. Collectively, the use of priors did not lead to much improvement: similar AUC and high congruence between regional models calibrated with and without priors. Correction for sampling bias led to higher model performance, whatever prior used, making the use of priors less pronounced. Under biased and incomplete sampling, the use of global bats data did not improve regional model performance. Without enough bias-free regional data, we cannot objectively identify the actual improvement of regional models after incorporating information from the global niche. However, we still believe in great potential for global model predictions to guide future surveys and improve regional sampling in data-poor regions.
物种分布建模(SDM)是生态学和保护领域的一种重要方法。SDM通常在一个国家的边界内进行校准,通常是沿着有限的环境梯度,使用有偏差和不完整的数据,这使得这些模型的质量受到质疑。在本研究中,我们评估了仅基于国家存在数据来校准区域SDM的充分性。我们在两个不同尺度上对埃及蝙蝠物种进行了SDM训练:仅在埃及境内以及在特定物种的全球范围内。我们使用了两种建模算法:最大熵模型(Maxent)和弹性网络,均在点过程建模框架下。对于每种建模算法,我们测量了埃及全球模型和区域模型预测的一致性,假设一致性越低,埃及数据集描述物种生态位的适宜性就越低。我们检查了将全球模型的预测作为区域模型的额外预测变量(“先验”)的效果,并在曲线下面积(AUC)以及有无先验的区域模型之间的一致性方面量化了改进情况。此外,我们分析了在两个尺度上校正抽样偏差后预测性能的改进情况。平均而言,埃及全球模型和区域模型的预测仅微弱一致。总体而言,使用先验并没有带来太大改进:有无先验校准的区域模型之间的AUC相似且一致性高。校正抽样偏差导致更高的模型性能,无论使用何种先验,这使得先验的作用不那么明显。在有偏差和不完整抽样的情况下,使用全球蝙蝠数据并没有提高区域模型的性能。如果没有足够的无偏差区域数据,我们就无法客观地确定纳入全球生态位信息后区域模型的实际改进情况。然而,我们仍然相信全球模型预测在指导未来调查和改善数据匮乏地区的区域抽样方面具有巨大潜力。