Institute of Technology, University of Tartugrid.10939.32, Tartu, Estonia.
Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
J Virol. 2021 Sep 27;95(20):e0035521. doi: 10.1128/JVI.00355-21. Epub 2021 Jul 28.
Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the nonstructural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1 to nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential -active sequences. Here, we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123, while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s, while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV, or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.
甲病毒具有正链 RNA 基因组,包含两个开放阅读框(ORF)。第一个 ORF 编码非结构(ns)多蛋白 P123 和 P1234,它们作为病毒 RNA 复制酶(nsP1 到 nsP4)亚单位的前体。P1234 的加工导致由 nsP4(RNA 聚合酶)和 P123 组成的负链复制酶的形成。随后 P123 的加工导致正链复制酶的形成。第二个 ORF 编码结构蛋白,通过亚基因组 RNA 的合成进行表达。甲病毒复制酶能够使用包含必需 -活性序列的模板 RNA。在这里,我们证明了以单独的 P123 和 nsP4 成分形式表达的九种甲病毒的复制酶是活跃的。它们的活性取决于 nsP4 的丰度。nsP4 与其模板的匹配强烈影响亚基因组 RNA 合成的效率。Barmah Forest 病毒(BFV)的 nsP4 仅与匹配的 P123 形成功能性复制酶,而其他甲病毒的 nsP4 也与几种异源 P123 相容。委内瑞拉马脑炎病毒和辛德毕斯病毒(SINV)的 P123 成分需要匹配的 nsP4,而其他病毒的 P123 可以与不同的 nsP4 形成活跃的复制酶。含有基孔肯雅病毒、里夫河谷热病毒、BFV 或 SINV 的 nsP4 的 Semliki Forest 病毒嵌合体是可行的。相比之下,含有来自不同甲病毒的 nsP4 的 SINV 嵌合体表现出温度敏感表型。这些发现强调了通过重组事件形成新甲病毒的可能性,并为开发用于疫苗接种策略的减毒嵌合病毒提供了一种新方法。
RNA 基因组病毒的一个关键要素是 RNA 复制酶。因此,了解 RNA 复制酶形成和功能的原理对于理解和应对新病毒的出现至关重要。从 nsP4 和 P123 多蛋白重建九种甲病毒的复制酶表明,包括蚊特异性 Eilat 病毒在内的大多数甲病毒的 nsP4 可以与来自不同病毒的 P123 形成功能性复制酶,相应的嵌合病毒具有复制能力。nsP4 也在确定模板 RNA 偏好和 RNA 合成效率方面发挥了明显作用。所揭示的甲病毒复制酶成分的广泛兼容性对于理解甲病毒 RNA 复制酶的形成和功能非常重要,并突出了不同甲病毒种之间重组的可能性。