Suppr超能文献

用于先进锂硫电池的硫化钴纳米颗粒嵌入柔性碳纳米纤维膜电催化剂的合理设计

Rational design of a cobalt sulfide nanoparticle-embedded flexible carbon nanofiber membrane electrocatalyst for advanced lithium-sulfur batteries.

作者信息

Zhang Chenfeng, Song Cailing, He Zongke, Zhao Yan, He Yusen, Bakenov Zhumabay

机构信息

School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China.

Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.

出版信息

Nanotechnology. 2021 Aug 17;32(45). doi: 10.1088/1361-6528/ac18a2.

Abstract

Both the sluggish redox kinetics and severe polysulfide shuttling behavior hinders the commercialization of lithium-sulfur (Li-S) battery. To solve these obstacles, we design a cobalt sulfide nanoparticle-embedded flexible carbon nanofiber membrane (denoted as CoS@NCF) as sulfiphilic functional interlayer materials. The hierarchically porous structure of carbon nanofiber is conducive to immobilizing sulfur species and facilitating lithium-ion penetration. Moreover, electrocatalytic CoSnanoparticles can significantly enhance the catalytic effect, achieving favorable adsorption-diffusion-conversion interface of polysulfide. Combined with these synergistic features, the assembled Li-S cell with CoS@NCF interlayer exhibited a great discharge capacity of 950.9 mAh gwith prolonged cycle lifespan at 1 C (maintained 648.1 mAh gover 500 cycles). This multifunctional interlayer material used in this contribution provides an advanced route for developing high-energy-density Li-S battery.

摘要

缓慢的氧化还原动力学和严重的多硫化物穿梭行为都阻碍了锂硫(Li-S)电池的商业化。为了解决这些障碍,我们设计了一种嵌入硫化钴纳米颗粒的柔性碳纳米纤维膜(记为CoS@NCF)作为亲硫功能中间层材料。碳纳米纤维的分级多孔结构有利于固定硫物种并促进锂离子渗透。此外,电催化CoS纳米颗粒可以显著增强催化效果,实现有利的多硫化物吸附-扩散-转化界面。结合这些协同特性,具有CoS@NCF中间层的组装Li-S电池在1 C下表现出950.9 mAh g的高放电容量,循环寿命延长(在500次循环中保持648.1 mAh g)。本研究中使用的这种多功能中间层材料为开发高能量密度的Li-S电池提供了一条先进途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验