Suppr超能文献

水合钴(I)簇中一氧化二氮的分解:配体结合模式的机理作用的理论见解。

Decomposition of nitrous oxide in hydrated cobalt(I) clusters: a theoretical insight into the mechanistic roles of ligand-binding modes.

机构信息

Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China.

出版信息

Phys Chem Chem Phys. 2021 Aug 12;23(31):16816-16826. doi: 10.1039/d1cp01820e.

Abstract

Hydrated cobalt(i) cluster ions, [Co(H2O)n]+, can decompose the inert nitrous oxide molecule, N2O. Density functional theory suggests that N2O can anchor to Co+ of [Co(N2O)(H2O)n]+ through either O end-on (η1-OL) or N end-on (η1-NL) coordinate mode. The latter is thermodynamically more favorable resulting from a subtle π backdonation from Co+ to N2O. N2O decomposition involves two major processes: (1) redox reaction and (2) N-O bond dissociation. The initial activation of N2O through an electron transfer from Co+ to N2O yields anionic N2O-, which binds to the metal center of [Co2+(N2O-)(H2O)n] also through either O end-on (η1-O) or N end-on (η1-N) mode and is stabilized by water molecules through hydrogen bonding. From η1-O, subsequent N-O bond dissociation to liberate N2, producing [CoO(H2O)n]+, is straightforward via a mechanism that is commonplace for typical metal-catalyzed N2O decompositions. Unexpectedly, the N-O bond dissociation directly from η1-N is also possible and eliminates both N2 and OH, explaining the formation of [CoOH(H2O)n]+ as observed in a previous experimental study. Interestingly, formation of [CoO(H2O)n]+ is kinetically controlled by the initial redox process between Co+ and the O-bound N2O, the activation barriers of which in large water clusters (n ≥ 14) are higher than that of the unexpected N-O bond dissociation from the N-bound structure forming [CoOH(H2O)n]+. This theoretical discovery implies that in the present of water molecules, the metal-catalyzed N2O decomposition starting from an O-bound metal complex is not mandatory.

摘要

水合钴(i)簇离子[Co(H2O)n]+可以分解惰性的一氧化二氮分子 N2O。密度泛函理论表明,N2O 可以通过 O 端-on(η1-OL)或 N 端-on(η1-NL)配位模式锚定到[Co(N2O)(H2O)n]+中的 Co+。由于 Co+向 N2O 的微妙π反馈,后者在热力学上更为有利。N2O 的分解涉及两个主要过程:(1)氧化还原反应和(2)N-O 键的解离。N2O 的初始活化是通过 Co+向 N2O 的电子转移来实现的,生成阴离子 N2O-,它也通过 O 端-on(η1-O)或 N 端-on(η1-N)模式与金属中心的[Co2+(N2O-)(H2O)n]结合,并通过氢键被水分子稳定。从η1-O 出发,随后通过 N-O 键的解离释放 N2,生成[CoO(H2O)n]+,通过一种常见的典型金属催化 N2O 分解的机制,这是直接的。出乎意料的是,从η1-N 直接进行 N-O 键的解离也是可能的,同时消除 N2 和 OH,这解释了在先前的实验研究中观察到的[CoOH(H2O)n]+的形成。有趣的是,[CoO(H2O)n]+的形成动力学上受到 Co+与 O 键合的 N2O 之间初始氧化还原过程的控制,在大的水分子簇(n≥14)中,其活化能垒高于从形成[CoOH(H2O)n]+的 N 键合结构中进行的意外的 N-O 键解离的活化能垒。这一理论发现表明,在水分子存在的情况下,从 O 键合的金属配合物开始的金属催化 N2O 分解并非必需。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验