Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States.
Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States.
Biochemistry. 2021 Aug 24;60(33):2549-2559. doi: 10.1021/acs.biochem.1c00389. Epub 2021 Jul 29.
senses extracellular heme via an extra cytoplasmic function σ factor that is activated upon interaction of the hemophore holo-HasAp with the HasR receptor. Herein, we show Y75H holo-HasAp interacts with HasR but is unable to release heme for signaling and uptake. To understand this inhibition, we undertook a spectroscopic characterization of Y75H holo-HasAp by resonance Raman (RR), electron paramagnetic resonance (EPR), and X-ray crystallography. The RR spectra are consistent with a mixed six-coordinate high-spin (6cHS), six-coordinate low-spin (6cLS) heme configuration and an HO exchangeable Fe-O stretching frequency with O/O and H/D isotope shifts that support a two-body Fe-OH oscillator with (iron-hydroxy)-like character as both hydrogen atoms are engaged in short hydrogen bond interactions with protein side chains. Further support comes from the EPR spectrum of Y75H holo-HasAp that shows a LS rhombic signal with ligand-field splitting values intermediate between those of His-hydroxy and bis-His ferric hemes. The crystal structure of Y75H holo-HasAp confirmed the coordinated solvent molecule hydrogen bonded through H75 and H83. The long-range conformational rearrangement of HasAp upon heme binding can still take place in Y75H holo-HasAp, because the intercalation of a hydroxy ligand between the heme iron and H75 allows the variant to reproduce the heme binding pocket observed in wild-type holo-HasAp. However, in the absence of a covalent linkage to the Y75 loop combined with the malleability provided by the bracketing H75 and H83 hydrogen bonds, either the hydroxy sixth ligand remains bound after complexation of Y75H holo-HasAp with HasR or rearrangement and coordination of H85 prevent heme transfer.
它通过一个细胞外功能 σ 因子感知细胞外血红素,该因子在血红素载体全血红素-HasAp 与 HasR 受体相互作用时被激活。在此,我们表明 Y75H 全血红素-HasAp 与 HasR 相互作用,但无法释放血红素用于信号转导和摄取。为了理解这种抑制作用,我们通过共振拉曼 (RR)、电子顺磁共振 (EPR) 和 X 射线晶体学对 Y75H 全血红素-HasAp 进行了光谱表征。RR 光谱与混合六配位高自旋 (6cHS)、六配位低自旋 (6cLS) 血红素构型以及 HO 可交换的 Fe-O 伸缩频率一致,具有 O/O 和 H/D 同位素位移,支持具有 (铁-羟基) 特征的双体 Fe-OH 振荡器,因为两个氢原子都与蛋白质侧链的短氢键相互作用。进一步的支持来自 Y75H 全血红素-HasAp 的 EPR 光谱,该光谱显示 LS 菱形信号,其配体场分裂值介于 His-hydroxy 和双 His 高铁血红素之间。Y75H 全血红素-HasAp 的晶体结构证实了通过 H75 和 H83 氢键配位的溶剂分子。血红素结合后 HasAp 的远程构象重排仍然可以在 Y75H 全血红素-HasAp 中发生,因为羟基配体在血红素铁和 H75 之间的插入允许变体再现野生型全血红素-HasAp 中观察到的血红素结合口袋。然而,在没有与 Y75 环的共价键连接的情况下,再加上由 H75 和 H83 氢键提供的可变性,要么在 Y75H 全血红素-HasAp 与 HasR 复合后,羟基第六配体仍然结合,要么 H85 的重排和配位阻止血红素转移。