Zhang Hongyu, Zhang Tiantong, Jia Yiming, Zhang Jinli, Han You
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
J Phys Chem Lett. 2021 Aug 5;12(30):7350-7356. doi: 10.1021/acs.jpclett.1c01779. Epub 2021 Jul 29.
The high cost of noble metal catalysts has been a major factor limiting their industrial applications. It is thus of strong interest to develop catalysts with minimum metal loading. Here, we designed and prepared a single-atom ruthenium catalyst through a cascade anchoring strategy to maximize the efficiency of Ru atoms for acetylene hydrochlorination. The single-atom catalyst supported on commercial activated carbon (AC) exhibits excellent catalytic activity with acetylene conversion of 95.4% at an acetylene gas hourly space velocity () of 720 h and almost no deactivation during a 600 h catalyst lifetime test. In conjunction with a series of experimental characterizations of the catalyst, including aberration-corrected scanning transmission electron microscopy (Ac-STEM), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine spectroscopy (EXAFS), density functional theory (DFT) study shows that RuN sites are likely responsible for acetylene hydrochlorination catalytic activity. This work provides a strategy to design efficient single-atom catalysts for acetylene hydrochlorination and helps us to gain deeper understanding of single-atom catalytic mechanisms.
贵金属催化剂的高成本一直是限制其工业应用的主要因素。因此,开发具有最低金属负载量的催化剂具有重要意义。在此,我们通过级联锚定策略设计并制备了一种单原子钌催化剂,以最大化钌原子用于乙炔氢氯化反应的效率。负载在商业活性炭(AC)上的单原子催化剂表现出优异的催化活性,在乙炔气体时空速为720 h⁻¹时乙炔转化率为95.4%,并且在600 h的催化剂寿命测试中几乎没有失活。结合对该催化剂的一系列实验表征,包括像差校正扫描透射电子显微镜(Ac-STEM)、X射线光电子能谱(XPS)和扩展X射线吸收精细结构光谱(EXAFS),密度泛函理论(DFT)研究表明RuN位点可能是乙炔氢氯化催化活性的原因。这项工作为设计用于乙炔氢氯化反应的高效单原子催化剂提供了一种策略,并有助于我们更深入地理解单原子催化机制。