School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.
School of Artificial Intelligence, Tiangong University, Tianjin, 300387, China.
Biochem Biophys Res Commun. 2021 Sep 24;571:131-136. doi: 10.1016/j.bbrc.2021.07.064. Epub 2021 Jul 26.
Brain-computer interfaces are a new pathway for communication between human body and the external environment. High classification accuracy for motor imagery electroencephalogram (EEG) signals is desirable by improving the algorithm of feature extraction and classification. A novel algorithm (VLPSO-MFDF) based on the variable length particle swarm optimization (VLPSO) and multi-feature deep fusion (MFDF) is proposed. First, each layer of the deep forest is reconstructed into two same classification modules. Then, several different features are extracted for the motor imagery EEG signal to feed separately to the classification modules. The VLPSO is used to search for the optimal weights for the probability vectors output by each classification module, which can continuously optimize the classification performance. Experimental results demonstrate that the VLPSO-MFDF algorithm can achieve higher classification accuracy for four classifications of motor imagery EEG signals compared with the traditional deep forest algorithm. The proposed method fused multi-domain features and corrected the prediction difference. It was of great significance for improving the performance of the classifier.
脑机接口是人体与外部环境之间进行通信的新途径。通过改进特征提取和分类算法,希望获得更高的运动想象脑电图(EEG)信号的分类准确性。提出了一种基于变长度粒子群优化(VLPSO)和多特征深度融合(MFDF)的新算法(VLPSO-MFDF)。首先,将深度森林的每一层重构为两个相同的分类模块。然后,为运动想象 EEG 信号提取多个不同的特征,分别馈送到分类模块。使用 VLPSO 搜索每个分类模块输出的概率向量的最优权重,从而可以不断优化分类性能。实验结果表明,与传统的深度森林算法相比,VLPSO-MFDF 算法可以实现更高的四类运动想象 EEG 信号的分类准确性。该方法融合了多域特征并校正了预测差异,对提高分类器的性能具有重要意义。