Suppr超能文献

一种综合的功能和临床基因组学方法揭示了驱动侵袭性转移性前列腺癌的基因。

An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer.

机构信息

Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA.

Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Nat Commun. 2021 Jul 29;12(1):4601. doi: 10.1038/s41467-021-24919-7.

Abstract

Genomic sequencing of thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for cancer cell proliferation or survival in hundreds of cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely a number of undiscovered tumor specific driver genes that may represent potential drug targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens in metastatic prostate cancer models. We then created a pipeline in which we integrated pan-cancer functional genomics data with our metastatic prostate cancer functional and clinical genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our integrative analysis of these data reveals known prostate cancer specific driver genes, such as AR and HOXB13, as well as a number of top hits that are poorly characterized. In this study we highlight the strength of an integrated clinical and functional genomics pipeline and focus on two top hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of AR-status, and are also associated with poor patient outcome.

摘要

对数千个肿瘤的基因组测序揭示了许多与特定类型癌症相关的基因。同样,大规模的 CRISPR 功能基因组学研究已经在数百种细胞系中绘制了与癌细胞增殖或存活相关的基因图谱。尽管如此,对于特定的疾病亚型,如转移性前列腺癌,可能还有许多未被发现的肿瘤特异性驱动基因,这些基因可能代表潜在的药物靶点。为了鉴定这些遗传依赖性,我们在转移性前列腺癌模型中进行了全基因组 CRISPRi 筛选。然后,我们创建了一个管道,将泛癌症功能基因组学数据与我们的转移性前列腺癌功能和临床基因组学数据集成,以鉴定能够驱动侵袭性前列腺癌表型的基因。我们对这些数据的综合分析揭示了已知的前列腺癌特异性驱动基因,如 AR 和 HOXB13,以及许多特征不明显的主要命中基因。在这项研究中,我们强调了集成临床和功能基因组学管道的优势,并重点关注两个主要命中基因,KIF4A 和 WDR62。我们证明 KIF4A 和 WDR62 都能在体外和体内多种模型中驱动侵袭性前列腺癌表型,与 AR 状态无关,并且与患者预后不良有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a23/8322386/e1129c1faec0/41467_2021_24919_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验