Division of Geriatrics, University of California, 4150 Clement St, VA181G, San Francisco, CA, 94121, USA.
San Francisco Veterans Affairs Medical Center, San Francisco, USA.
J Gen Intern Med. 2022 Feb;37(3):499-506. doi: 10.1007/s11606-021-07018-7. Epub 2021 Jul 29.
Guidelines recommend breast and colorectal cancer screening for older adults with a life expectancy >10 years. Most mortality indexes require clinician data entry, presenting a barrier for routine use in care. Electronic health records (EHR) are a rich clinical data source that could be used to create individualized life expectancy predictions to identify patients for cancer screening without data entry.
To develop and internally validate a life expectancy calculator from structured EHR data.
Retrospective cohort study using national Veteran's Affairs (VA) EHR databases.
Veterans aged 50+ with a primary care visit during 2005.
We assessed demographics, diseases, medications, laboratory results, healthcare utilization, and vital signs 1 year prior to the index visit. Mortality follow-up was complete through 2017. Using the development cohort (80% sample), we used LASSO Cox regression to select ~100 predictors from 913 EHR data elements. In the validation cohort (remaining 20% sample), we calculated the integrated area under the curve (iAUC) and evaluated calibration.
In 3,705,122 patients, the mean age was 68 years and the majority were male (97%) and white (85%); nearly half (49%) died. The life expectancy calculator included 93 predictors; age and gender most strongly contributed to discrimination; diseases also contributed significantly while vital signs were negligible. The iAUC was 0.816 (95% confidence interval, 0.815, 0.817) with good calibration.
We developed a life expectancy calculator using VA EHR data with excellent discrimination and calibration. Automated life expectancy prediction using EHR data may improve guideline-concordant breast and colorectal cancer screening by identifying patients with a life expectancy >10 years.
指南建议预期寿命> 10 年的老年人进行乳腺癌和结直肠癌筛查。大多数死亡率指数都需要临床医生输入数据,这给常规使用造成了障碍。电子健康记录(EHR)是一个丰富的临床数据源,可以用来创建个性化的预期寿命预测,以识别需要进行癌症筛查的患者,而无需输入数据。
从结构化 EHR 数据中开发和内部验证预期寿命计算器。
使用全国退伍军人事务部(VA)EHR 数据库的回顾性队列研究。
2005 年期间有初级保健就诊的年龄 50 岁以上的退伍军人。
我们评估了患者的人口统计学、疾病、药物、实验室结果、医疗保健利用情况和生命体征,这些数据均在就诊前 1 年采集。通过 2017 年,对患者进行了完整的死亡率随访。使用开发队列(80%的样本),我们使用 LASSO Cox 回归从 913 个 EHR 数据元素中选择了~100 个预测因子。在验证队列(剩余的 20%样本)中,我们计算了综合曲线下面积(iAUC)并评估了校准情况。
在 3705122 名患者中,平均年龄为 68 岁,大多数为男性(97%)和白人(85%);近一半(49%)死亡。预期寿命计算器包括 93 个预测因子;年龄和性别对区分度的贡献最大;疾病也有显著贡献,而生命体征则微不足道。iAUC 为 0.816(95%置信区间,0.815,0.817),校准良好。
我们使用 VA EHR 数据开发了一种预期寿命计算器,具有出色的区分度和校准度。使用 EHR 数据进行自动化的预期寿命预测,通过识别预期寿命> 10 年的患者,可能会改善符合指南的乳腺癌和结直肠癌筛查。