Suppr超能文献

利用电子健康记录临床数据预测预期寿命以确定癌症筛查目标。

Predicting Life Expectancy to Target Cancer Screening Using Electronic Health Record Clinical Data.

机构信息

Division of Geriatrics, University of California, 4150 Clement St, VA181G, San Francisco, CA, 94121, USA.

San Francisco Veterans Affairs Medical Center, San Francisco, USA.

出版信息

J Gen Intern Med. 2022 Feb;37(3):499-506. doi: 10.1007/s11606-021-07018-7. Epub 2021 Jul 29.

Abstract

BACKGROUND

Guidelines recommend breast and colorectal cancer screening for older adults with a life expectancy >10 years. Most mortality indexes require clinician data entry, presenting a barrier for routine use in care. Electronic health records (EHR) are a rich clinical data source that could be used to create individualized life expectancy predictions to identify patients for cancer screening without data entry.

OBJECTIVE

To develop and internally validate a life expectancy calculator from structured EHR data.

DESIGN

Retrospective cohort study using national Veteran's Affairs (VA) EHR databases.

PATIENTS

Veterans aged 50+ with a primary care visit during 2005.

MAIN MEASURES

We assessed demographics, diseases, medications, laboratory results, healthcare utilization, and vital signs 1 year prior to the index visit. Mortality follow-up was complete through 2017. Using the development cohort (80% sample), we used LASSO Cox regression to select ~100 predictors from 913 EHR data elements. In the validation cohort (remaining 20% sample), we calculated the integrated area under the curve (iAUC) and evaluated calibration.

KEY RESULTS

In 3,705,122 patients, the mean age was 68 years and the majority were male (97%) and white (85%); nearly half (49%) died. The life expectancy calculator included 93 predictors; age and gender most strongly contributed to discrimination; diseases also contributed significantly while vital signs were negligible. The iAUC was 0.816 (95% confidence interval, 0.815, 0.817) with good calibration.

CONCLUSIONS

We developed a life expectancy calculator using VA EHR data with excellent discrimination and calibration. Automated life expectancy prediction using EHR data may improve guideline-concordant breast and colorectal cancer screening by identifying patients with a life expectancy >10 years.

摘要

背景

指南建议预期寿命> 10 年的老年人进行乳腺癌和结直肠癌筛查。大多数死亡率指数都需要临床医生输入数据,这给常规使用造成了障碍。电子健康记录(EHR)是一个丰富的临床数据源,可以用来创建个性化的预期寿命预测,以识别需要进行癌症筛查的患者,而无需输入数据。

目的

从结构化 EHR 数据中开发和内部验证预期寿命计算器。

设计

使用全国退伍军人事务部(VA)EHR 数据库的回顾性队列研究。

患者

2005 年期间有初级保健就诊的年龄 50 岁以上的退伍军人。

主要测量指标

我们评估了患者的人口统计学、疾病、药物、实验室结果、医疗保健利用情况和生命体征,这些数据均在就诊前 1 年采集。通过 2017 年,对患者进行了完整的死亡率随访。使用开发队列(80%的样本),我们使用 LASSO Cox 回归从 913 个 EHR 数据元素中选择了~100 个预测因子。在验证队列(剩余的 20%样本)中,我们计算了综合曲线下面积(iAUC)并评估了校准情况。

主要结果

在 3705122 名患者中,平均年龄为 68 岁,大多数为男性(97%)和白人(85%);近一半(49%)死亡。预期寿命计算器包括 93 个预测因子;年龄和性别对区分度的贡献最大;疾病也有显著贡献,而生命体征则微不足道。iAUC 为 0.816(95%置信区间,0.815,0.817),校准良好。

结论

我们使用 VA EHR 数据开发了一种预期寿命计算器,具有出色的区分度和校准度。使用 EHR 数据进行自动化的预期寿命预测,通过识别预期寿命> 10 年的患者,可能会改善符合指南的乳腺癌和结直肠癌筛查。

相似文献

1
Predicting Life Expectancy to Target Cancer Screening Using Electronic Health Record Clinical Data.
J Gen Intern Med. 2022 Feb;37(3):499-506. doi: 10.1007/s11606-021-07018-7. Epub 2021 Jul 29.
2
Development of a 5 year life expectancy index in older adults using predictive mining of electronic health record data.
J Am Med Inform Assoc. 2013 Jun;20(e1):e118-24. doi: 10.1136/amiajnl-2012-001360. Epub 2013 Mar 28.
3
Development and Validation of the Life Expectancy Estimator for Older Adults with Diabetes (LEAD): the Diabetes and Aging Study.
J Gen Intern Med. 2023 Oct;38(13):2860-2869. doi: 10.1007/s11606-023-08219-y. Epub 2023 May 30.
7
Assessment of Clinician Decision-making on Cancer Screening Cessation in Older Adults With Limited Life Expectancy.
JAMA Netw Open. 2020 Jun 1;3(6):e206772. doi: 10.1001/jamanetworkopen.2020.6772.
8
Influence of Age, Health, and Function on Cancer Screening in Older Adults with Limited Life Expectancy.
J Gen Intern Med. 2019 Jan;34(1):110-117. doi: 10.1007/s11606-018-4717-y. Epub 2018 Nov 6.
10
Clinician Factors Associated With Prostate-Specific Antigen Screening in Older Veterans With Limited Life Expectancy.
JAMA Intern Med. 2016 May 1;176(5):654-61. doi: 10.1001/jamainternmed.2016.0695.

引用本文的文献

本文引用的文献

1
2
Hidden in Plain Sight - Reconsidering the Use of Race Correction in Clinical Algorithms.
N Engl J Med. 2020 Aug 27;383(9):874-882. doi: 10.1056/NEJMms2004740. Epub 2020 Jun 17.
3
Dissecting racial bias in an algorithm used to manage the health of populations.
Science. 2019 Oct 25;366(6464):447-453. doi: 10.1126/science.aax2342.
4
Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability.
Hastings Cent Rep. 2019 Jan;49(1):15-21. doi: 10.1002/hast.973.
5
Ensuring Fairness in Machine Learning to Advance Health Equity.
Ann Intern Med. 2018 Dec 18;169(12):866-872. doi: 10.7326/M18-1990. Epub 2018 Dec 4.
6
Machine Learning, Health Disparities, and Causal Reasoning.
Ann Intern Med. 2018 Dec 18;169(12):883-884. doi: 10.7326/M18-3297. Epub 2018 Dec 4.
8
Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data.
JAMA Intern Med. 2018 Nov 1;178(11):1544-1547. doi: 10.1001/jamainternmed.2018.3763.
10
Implementing Machine Learning in Health Care - Addressing Ethical Challenges.
N Engl J Med. 2018 Mar 15;378(11):981-983. doi: 10.1056/NEJMp1714229.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验