Suppr超能文献

快速灵活的有效迁移曲面估计。

Fast and flexible estimation of effective migration surfaces.

机构信息

Department of Human Genetics, University of Chicago, Chicago, United States.

Department of Statistics, University of California, Berkeley, Berkeley, United States.

出版信息

Elife. 2021 Jul 30;10:e61927. doi: 10.7554/eLife.61927.

Abstract

Spatial population genetic data often exhibits 'isolation-by-distance,' where genetic similarity tends to decrease as individuals become more geographically distant. The rate at which genetic similarity decays with distance is often spatially heterogeneous due to variable population processes like genetic drift, gene flow, and natural selection. Petkova et al., 2016 developed a statistical method called Estimating Effective Migration Surfaces (EEMS) for visualizing spatially heterogeneous isolation-by-distance on a geographic map. While EEMS is a powerful tool for depicting spatial population structure, it can suffer from slow runtimes. Here, we develop a related method called Fast Estimation of Effective Migration Surfaces (FEEMS). FEEMS uses a Gaussian Markov Random Field model in a penalized likelihood framework that allows for efficient optimization and output of effective migration surfaces. Further, the efficient optimization facilitates the inference of migration parameters per edge in the graph, rather than per node (as in EEMS). With simulations, we show conditions under which FEEMS can accurately recover effective migration surfaces with complex gene-flow histories, including those with anisotropy. We apply FEEMS to population genetic data from North American gray wolves and show it performs favorably in comparison to EEMS, with solutions obtained orders of magnitude faster. Overall, FEEMS expands the ability of users to quickly visualize and interpret spatial structure in their data.

摘要

空间人口遗传数据通常表现出“距离隔离”,即个体之间的遗传相似性随着地理距离的增加而降低。由于遗传漂变、基因流和自然选择等不同的种群过程,遗传相似性随距离衰减的速度在空间上往往是不均匀的。Petkova 等人,2016 年开发了一种名为“有效迁移面估计”(EEMS)的统计方法,用于在地理图上可视化空间异质的距离隔离。虽然 EEMS 是描绘空间种群结构的强大工具,但它可能运行缓慢。在这里,我们开发了一种名为“快速有效迁移面估计”(FEEMS)的相关方法。FEEMS 在惩罚似然框架中使用高斯马尔可夫随机场模型,允许有效优化和输出有效迁移面。此外,有效的优化促进了对图中每条边的迁移参数的推断,而不是对每个节点(如 EEMS)。通过模拟,我们展示了 FEEMS 在具有复杂基因流动历史的情况下(包括各向异性)准确恢复有效迁移面的条件。我们将 FEEMS 应用于北美灰狼的群体遗传数据,并表明它与 EEMS 相比表现良好,获得的解决方案快了几个数量级。总体而言,FEEMS 扩展了用户快速可视化和解释数据中空间结构的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/8324296/32d8e96c2fa5/elife-61927-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验