Suppr超能文献

生物 ERP:基于生物医学异构网络的自监督表示学习方法,用于实体关系预测。

BioERP: biomedical heterogeneous network-based self-supervised representation learning approach for entity relationship predictions.

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.

School of Computer Science, National University of Defense Technology, Changsha 410073, China.

出版信息

Bioinformatics. 2021 Dec 11;37(24):4793-4800. doi: 10.1093/bioinformatics/btab565.

Abstract

MOTIVATION

Predicting entity relationship can greatly benefit important biomedical problems. Recently, a large amount of biomedical heterogeneous networks (BioHNs) are generated and offer opportunities for developing network-based learning approaches to predict relationships among entities. However, current researches slightly explored BioHNs-based self-supervised representation learning methods, and are hard to simultaneously capturing local- and global-level association information among entities.

RESULTS

In this study, we propose a BioHN-based self-supervised representation learning approach for entity relationship predictions, termed BioERP. A self-supervised meta path detection mechanism is proposed to train a deep Transformer encoder model that can capture the global structure and semantic feature in BioHNs. Meanwhile, a biomedical entity mask learning strategy is designed to reflect local associations of vertices. Finally, the representations from different task models are concatenated to generate two-level representation vectors for predicting relationships among entities. The results on eight datasets show BioERP outperforms 30 state-of-the-art methods. In particular, BioERP reveals great performance with results close to 1 in terms of AUC and AUPR on the drug-target interaction predictions. In summary, BioERP is a promising bio-entity relationship prediction approach.

AVAILABILITY AND IMPLEMENTATION

Source code and data can be downloaded from https://github.com/pengsl-lab/BioERP.git.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

预测实体关系可以极大地有益于重要的生物医学问题。最近,大量的生物医学异质网络(BioHNs)被生成,并为开发基于网络的学习方法来预测实体之间的关系提供了机会。然而,目前的研究很少探索基于 BioHNs 的自监督表示学习方法,并且难以同时捕获实体之间的局部和全局关联信息。

结果

在这项研究中,我们提出了一种基于 BioHN 的自监督表示学习方法,用于实体关系预测,称为 BioERP。提出了一种自监督元路径检测机制,用于训练深度 Transformer 编码器模型,该模型可以捕获 BioHNs 中的全局结构和语义特征。同时,设计了一种生物医学实体掩蔽学习策略来反映顶点的局部关联。最后,来自不同任务模型的表示被连接起来,为预测实体之间的关系生成两级表示向量。在八个数据集上的结果表明,BioERP 优于 30 种最先进的方法。特别是,在药物-靶标相互作用预测方面,BioERP 在 AUC 和 AUPR 方面的表现非常出色,结果接近 1。总之,BioERP 是一种很有前途的生物实体关系预测方法。

可用性和实现

源代码和数据可从 https://github.com/pengsl-lab/BioERP.git 下载。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验