Suppr超能文献

蛋白质-配体相互作用预测简述。

A brief review of protein-ligand interaction prediction.

作者信息

Zhao Lingling, Zhu Yan, Wang Junjie, Wen Naifeng, Wang Chunyu, Cheng Liang

机构信息

Faculty of Computing, Harbin Institute of Technology, Harbin, China.

Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.

出版信息

Comput Struct Biotechnol J. 2022 Jun 3;20:2831-2838. doi: 10.1016/j.csbj.2022.06.004. eCollection 2022.

Abstract

The task of identifying protein-ligand interactions (PLIs) plays a prominent role in the field of drug discovery. However, it is infeasible to identify potential PLIs via costly and laborious experiments. There is a need to develop PLI computational prediction approaches to speed up the drug discovery process. In this review, we summarize a brief introduction to various computation-based PLIs. We discuss these approaches, in particular, machine learning-based methods, with illustrations of different emphases based on mainstream trends. Moreover, we analyzed three research dynamics that can be further explored in future studies.

摘要

识别蛋白质-配体相互作用(PLIs)的任务在药物发现领域中起着重要作用。然而,通过昂贵且费力的实验来识别潜在的PLIs是不可行的。因此,需要开发PLI计算预测方法来加速药物发现过程。在这篇综述中,我们简要总结了各种基于计算的PLIs。我们讨论了这些方法,特别是基于机器学习的方法,并根据主流趋势进行了不同重点的阐述。此外,我们分析了未来研究中可以进一步探索的三个研究动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d625/9189993/b76afee8282e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验