Suppr超能文献

通过三重协同催化实现羧酸的位点特异性反转酰胺化。

Site-specific Umpolung amidation of carboxylic acids via triplet synergistic catalysis.

机构信息

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China.

出版信息

Nat Commun. 2021 Jul 30;12(1):4637. doi: 10.1038/s41467-021-24908-w.

Abstract

Development of catalytic amide bond-forming methods is important because they could potentially address the existing limitations of classical methods using superstoichiometric activating reagents. In this paper, we disclose an Umpolung amidation reaction of carboxylic acids with nitroarenes and nitroalkanes enabled by the triplet synergistic catalysis of FeI, P(V)/P(III) and photoredox catalysis, which avoids the production of byproducts from stoichiometric coupling reagents. A wide range of carboxylic acids, including aliphatic, aromatic and alkenyl acids participate smoothly in such reactions, generating structurally diverse amides in good yields (86 examples, up to 97% yield). This Umpolung amidation strategy opens a method to address challenging regioselectivity issues between nucleophilic functional groups, and complements the functional group compatibility of the classical amidation protocols. The synthetic robustness of the reaction is demonstrated by late-stage modification of complex molecules and gram-scale applications.

摘要

发展催化酰胺键形成方法很重要,因为它们可能解决使用超化学计量活化试剂的经典方法的现有局限性。在本文中,我们披露了一种由三重协同催化的羧酸与硝基芳烃和硝基烷的反转酰胺化反应FeI、P(V)/P(III) 和光氧化还原催化,避免了使用化学计量偶联试剂产生副产物。广泛的羧酸,包括脂肪族、芳香族和烯基酸,都能顺利地参与此类反应,以良好的收率生成结构多样的酰胺(86 个实例,最高收率为 97%)。这种反转酰胺化策略为解决亲核官能团之间具有挑战性的区域选择性问题提供了一种方法,并补充了经典酰胺化方案的官能团兼容性。该反应的合成稳健性通过复杂分子的后期修饰和克级应用得到了证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5681/8324892/32f6722bbf63/41467_2021_24908_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验