Suppr超能文献

同时调控体相激子和表面缺陷以实现超稳定且高选择性的CO光还原

Simultaneous Manipulation of Bulk Excitons and Surface Defects for Ultrastable and Highly Selective CO Photoreduction.

作者信息

Shi Yanbiao, Zhan Guangming, Li Hao, Wang Xiaobing, Liu Xiufan, Shi Lujia, Wei Kai, Ling Cancan, Li Zhilin, Wang Hao, Mao Chengliang, Liu Xiao, Zhang Lizhi

机构信息

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.

出版信息

Adv Mater. 2021 Sep;33(38):e2100143. doi: 10.1002/adma.202100143. Epub 2021 Jul 31.

Abstract

The objective of photocatalytic CO reduction (PCR) is to achieve high selectivity for a single energy-bearing product with high efficiency and stability. The bulk configuration usually determines charge carrier kinetics, whereas surface atomic arrangement defines the PCR thermodynamic pathway. Concurrent engineering of bulk and surface structures is therefore crucial for achieving the goal of PCR. Herein, an ultrastable and highly selective PCR using homogeneously doped BiOCl nanosheets synthesized via an inventive molten strategy is presented. With B O as both the molten salt and doping precursor, this new doping approach ensures boron (B) doping from the surface into the bulk with dual functionalities. Bulk B doping mitigates strong excitonic effects confined in 2D BiOCl by significantly reducing exciton binding energies, whereas surface-doped B atoms reconstruct the BiOCl surface by extracting lattice hydroxyl groups, resulting in intimate B-oxygen vacancy (B-OV) associates. These exclusive B-OV associates enable spontaneous CO activation, suppress competitive hydrogen evolution and promote the proton-coupled electron transfer step by stabilizing *COOH for selective CO generation. As a result, the homogeneous B-doped BiOCl nanosheets exhibit 98% selectivity for CO -to-CO reduction under visible light, with an impressive rate of 83.64 µmol g h and ultrastability for long-term testing of 120 h.

摘要

光催化CO还原(PCR)的目标是高效且稳定地实现对单一含能产物的高选择性。体相结构通常决定电荷载流子动力学,而表面原子排列则定义了PCR的热力学途径。因此,同时对体相和表面结构进行工程设计对于实现PCR目标至关重要。在此,我们展示了一种使用通过创新的熔融策略合成的均匀掺杂BiOCl纳米片的超稳定且高选择性的PCR。以B₂O₃作为熔盐和掺杂前驱体,这种新的掺杂方法确保硼(B)从表面掺杂到体相中并具有双重功能。体相B掺杂通过显著降低激子结合能减轻了二维BiOCl中受限的强激子效应,而表面掺杂的B原子通过提取晶格羟基重构BiOCl表面,形成紧密的B-氧空位(B-OV)缔合体。这些独特的B-OV缔合体能够实现自发的CO活化,抑制竞争性析氢,并通过稳定*COOH促进质子耦合电子转移步骤以选择性地生成CO。结果,均匀B掺杂的BiOCl纳米片在可见光下对CO₂还原为CO表现出98%的选择性,速率高达83.64 μmol g⁻¹ h⁻¹,并且在长达120小时的长期测试中具有超稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验