Suppr超能文献

在具有丰富氧空位的负载金的BiOCl上同时实现二氧化碳的吸附、活化和原位还原。

The simultaneous adsorption, activation and in situ reduction of carbon dioxide over Au-loading BiOCl with rich oxygen vacancies.

作者信息

Li Yi-Lei, Liu Ying, Mu Hui-Ying, Liu Rui-Hong, Hao Ying-Juan, Wang Xiao-Jing, Hildebrandt Diane, Liu Xinying, Li Fa-Tang

机构信息

College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.

International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang, 050018, China and Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa (UNISA), Florida 1710, South Africa.

出版信息

Nanoscale. 2021 Jan 28;13(4):2585-2592. doi: 10.1039/d0nr08314c. Epub 2021 Jan 22.

Abstract

The main process of carbon dioxide (CO) photoreduction is that excited electrons are transported to surface active sites to reduce adsorbed CO molecules. Obviously, electron transfer to the active site is one of the key steps in this process. However, current catalysts for CO adsorption, activation, and electron reduction occur in different locations, which greatly reduce the efficiency of photocatalysis. Herein, through a spontaneous chemical redox approach, the plasmonic photocatalysts of Au-BiOCl-OV with enhanced interfacial interaction were fabricated for visible light CO reduction through the simultaneous adsorption, activation and in situ reduction of CO without a sacrificial agent. By loading gold (Au) on the oxygen vacancy (OV), Au and BiOCl-OV formed a direct and tight interface contact, whose fine structure was confirmed by SEM, TEM, EPR and XPS, which not only effectively boosts the light utilization efficiency and the light carrier separation ability, but also can simultaneously adsorb, activate and in situ reduce carbon dioxide for highly efficient visible light photocatalysis. Thanks to the synergistic influence of Au and OV, Au-BiOCl-OV exhibits excellent photocatalytic performance without sacrificial agent and outstanding stability with a high CO and CH production yield, reaching 4.85 μmol g h, which were 2.8 times higher than C-Au-BiOCl-OV (obtained by traditional NaBH reduction). This study proposes a new strategy for the production of high-performance collaborative catalysis in photocatalytic CO reduction.

摘要

二氧化碳(CO)光还原的主要过程是,激发电子被传输到表面活性位点以还原吸附的CO分子。显然,电子转移到活性位点是该过程的关键步骤之一。然而,目前用于CO吸附、活化和电子还原的催化剂发生在不同位置,这大大降低了光催化效率。在此,通过自发化学氧化还原方法,制备了具有增强界面相互作用的Au-BiOCl-OV等离子体光催化剂,用于在无牺牲剂的情况下通过同时吸附、活化和原位还原CO进行可见光CO还原。通过将金(Au)负载在氧空位(OV)上,Au与BiOCl-OV形成了直接且紧密的界面接触,其精细结构通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子顺磁共振(EPR)和X射线光电子能谱(XPS)得以证实,这不仅有效提高了光利用效率和光载流子分离能力,还能同时吸附、活化和原位还原二氧化碳以实现高效可见光光催化。得益于Au和OV的协同作用,Au-BiOCl-OV在无牺牲剂的情况下表现出优异的光催化性能和出色的稳定性,具有高的CO和CH生成产率,达到4.85 μmol g⁻¹ h⁻¹,这比C-Au-BiOCl-OV(通过传统的NaBH₄还原获得)高2.8倍。本研究提出了一种在光催化CO还原中制备高性能协同催化的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验