Suppr超能文献

药物研发的新策略:利用计算机辅助药物发现方法靶向蛋白-DNA 相互作用。

Drugging the 'undruggable'. Therapeutic targeting of protein-DNA interactions with the use of computer-aided drug discovery methods.

机构信息

Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.

Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.

出版信息

Drug Discov Today. 2021 Nov;26(11):2660-2679. doi: 10.1016/j.drudis.2021.07.018. Epub 2021 Jul 28.

Abstract

Transcription factors (TFs) act as major oncodrivers in many cancers and are frequently regarded as high-value therapeutic targets. The functionality of TFs relies on direct protein-DNA interactions, which are notoriously difficult to target with small molecules. However, this prior view of the 'undruggability' of protein-DNA interfaces has shifted substantially in recent years, in part because of significant advances in computer-aided drug discovery (CADD). In this review, we highlight recent examples of successful CADD campaigns resulting in drug candidates that directly interfere with protein-DNA interactions of several key cancer TFs, including androgen receptor (AR), ETS-related gene (ERG), MYC, thymocyte selection-associated high mobility group box protein (TOX), topoisomerase II (TOP2), and signal transducer and activator of transcription 3 (STAT3). Importantly, these findings open novel and compelling avenues for therapeutic targeting of over 1600 human TFs implicated in many conditions including and beyond cancer.

摘要

转录因子(TFs)在许多癌症中充当主要的癌基因驱动因子,常被视为高价值的治疗靶点。TFs 的功能依赖于直接的蛋白质-DNA 相互作用,而小分子靶向这种相互作用极具挑战性。然而,近年来,由于计算机辅助药物发现(CADD)的显著进步,这种对“蛋白质-DNA 界面不可成药”的先入之见发生了重大转变。在这篇综述中,我们重点介绍了最近成功的 CADD 活动的例子,这些活动产生了候选药物,这些药物直接干扰了几个关键的癌症 TFs 的蛋白质-DNA 相互作用,包括雄激素受体(AR)、ETS 相关基因(ERG)、MYC、胸腺细胞选择相关高迁移率族盒蛋白(TOX)、拓扑异构酶 II(TOP2)和信号转导和转录激活因子 3(STAT3)。重要的是,这些发现为治疗靶向超过 1600 种与许多疾病(包括癌症)相关的人类 TF 提供了新颖而引人注目的途径。

相似文献

1
Drugging the 'undruggable'. Therapeutic targeting of protein-DNA interactions with the use of computer-aided drug discovery methods.
Drug Discov Today. 2021 Nov;26(11):2660-2679. doi: 10.1016/j.drudis.2021.07.018. Epub 2021 Jul 28.
2
Drugging the 'undruggable' cancer targets.
Nat Rev Cancer. 2017 Aug;17(8):502-508. doi: 10.1038/nrc.2017.36. Epub 2017 Jun 23.
4
Current strategies and progress for targeting the "undruggable" transcription factors.
Acta Pharmacol Sin. 2022 Oct;43(10):2474-2481. doi: 10.1038/s41401-021-00852-9. Epub 2022 Feb 7.
5
Advances in targeting 'undruggable' transcription factors with small molecules.
Nat Rev Drug Discov. 2021 Sep;20(9):669-688. doi: 10.1038/s41573-021-00199-0. Epub 2021 May 18.
6
Traditional and Novel Computer-Aided Drug Design (CADD) Approaches in the Anticancer Drug Discovery Process.
Curr Cancer Drug Targets. 2023;23(5):333-345. doi: 10.2174/1568009622666220705104249.
7
STAT proteins as novel targets for cancer drug discovery.
Expert Opin Ther Targets. 2004 Oct;8(5):409-22. doi: 10.1517/14728222.8.5.409.
8
Targeting post-translational modification of transcription factors as cancer therapy.
Drug Discov Today. 2020 Aug;25(8):1502-1512. doi: 10.1016/j.drudis.2020.06.005. Epub 2020 Jun 12.
9
Targeting DNA binding proteins for cancer therapy.
Cancer Sci. 2020 Apr;111(4):1058-1064. doi: 10.1111/cas.14355. Epub 2020 Mar 24.

引用本文的文献

1
Mutational landscapes of HNF MODY gene products display a wide distribution with functional implications.
Endocr Connect. 2025 Sep 2;14(9). doi: 10.1530/EC-25-0345. Print 2025 Sep 1.
2
Chemical inhibition of a bacterial immune system 1.
bioRxiv. 2025 Feb 21:2025.02.20.638879. doi: 10.1101/2025.02.20.638879.
3
Fine-Tuning of ATF4 DNA Binding Activity by a Secondary Basic Motif Unique to the ATF-X Subfamily of bZip Transcription Factors.
Biochemistry. 2025 Mar 18;64(6):1257-1265. doi: 10.1021/acs.biochem.4c00640. Epub 2025 Feb 24.
4
Virtual fragment screening for DNA repair inhibitors in vast chemical space.
Nat Commun. 2025 Feb 18;16(1):1741. doi: 10.1038/s41467-025-56893-9.
5
Elucidating the Role of Groove Hydration on Stability and Functions of Biased DNA Duplexes in Cell-Like Chemical Environments.
J Am Chem Soc. 2024 Nov 27;146(47):32479-32497. doi: 10.1021/jacs.4c09388. Epub 2024 Nov 6.
6
Role of Natural Binding Proteins in Therapy and Diagnostics.
Life (Basel). 2024 May 15;14(5):630. doi: 10.3390/life14050630.
7
Updated understanding of the protein-DNA recognition code used by C2H2 zinc finger proteins.
Curr Opin Struct Biol. 2024 Aug;87:102836. doi: 10.1016/j.sbi.2024.102836. Epub 2024 May 15.
9
C2H2 Zinc Finger Transcription Factors Associated with Hemoglobinopathies.
J Mol Biol. 2024 Apr 1;436(7):168343. doi: 10.1016/j.jmb.2023.168343. Epub 2023 Nov 2.
10
Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential.
MedComm (2020). 2023 Oct 3;4(5):e375. doi: 10.1002/mco2.375. eCollection 2023 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验