Suppr超能文献

自发性耳声发射是镫骨膜缺陷小鼠的生物标志物。

Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects.

机构信息

The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208, USA.

出版信息

Hear Res. 2021 Sep 15;409:108314. doi: 10.1016/j.heares.2021.108314. Epub 2021 Jul 21.

Abstract

Cochlear function depends on the operation of a coupled feedback loop, incorporating outer hair cells (OHCs), and structured to assure that inner hair cells (IHCs) convey frequency specific acoustic information to the brain, even at very low sound levels. Although our knowledge of OHC function and its contribution to cochlear amplification has expanded, the importance of the tectorial membrane (TM) to the processing of mechanical inputs has not been fully elucidated. In addition, there are a surprising number of genetic mutations that affect TM structure and that produce hearing loss in humans. By synthesizing old and new results obtained on several mouse mutants, we learned that animals with abnormal TMs are prone to generate spontaneous otoacoustic emissions (SOAE), which are uncommon in most wildtype laboratory animals. Because SOAEs are not produced in TM mutants or in humans when threshold shifts exceed approximately 25 dB, some degree of cochlear amplification is required. However, amplification by itself is not sufficient because normal mice are rarely spontaneous emitters. Since SOAEs reflect active cochlear operation, TM mutants are valuable for studying the oscillatory nature of the amplification process and the structures associated with its stabilization. Inasmuch as the mouse models were selected to mirror human auditory disorders, using SOAEs as a noninvasive clinical tool may assist the classification of individuals with genetic defects that influence the active mechanisms responsible for sensitivity and frequency selectivity, the hallmarks of mammalian hearing.

摘要

耳蜗功能依赖于一个耦合的反馈环的运作,该反馈环整合了外毛细胞(OHC),并进行了结构设计,以确保内毛细胞(IHC)将特定频率的声信息传递到大脑,即使在非常低的声音水平下也是如此。尽管我们对 OHC 功能及其对耳蜗放大的贡献的了解有所增加,但尚未充分阐明听骨膜(TM)对机械输入处理的重要性。此外,有许多遗传突变会影响 TM 的结构,并导致人类听力损失。通过综合在几种小鼠突变体上获得的新旧结果,我们了解到,TM 异常的动物容易产生自发耳声发射(SOAE),而在大多数野生型实验室动物中,这种情况并不常见。因为 TM 突变体或阈值移位超过约 25dB 的人类不会产生 SOAE,所以需要一定程度的耳蜗放大。然而,仅仅放大是不够的,因为正常的老鼠很少自发发射。由于 SOAEs 反映了活跃的耳蜗运作,因此 TM 突变体对于研究放大过程的振荡性质以及与其稳定性相关的结构非常有价值。由于这些小鼠模型是为了模拟人类的听觉障碍而选择的,因此将 SOAE 用作非侵入性临床工具可能有助于对影响负责灵敏度和频率选择性的主动机制的遗传缺陷个体进行分类,这是哺乳动物听觉的标志。

相似文献

1
Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects.
Hear Res. 2021 Sep 15;409:108314. doi: 10.1016/j.heares.2021.108314. Epub 2021 Jul 21.
4
Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects.
Hear Res. 2021 Feb;400:108143. doi: 10.1016/j.heares.2020.108143. Epub 2020 Dec 5.
5
Increased Spontaneous Otoacoustic Emissions in Mice with a Detached Tectorial Membrane.
J Assoc Res Otolaryngol. 2016 Apr;17(2):81-8. doi: 10.1007/s10162-015-0551-7. Epub 2015 Dec 21.
7
Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane.
J Assoc Res Otolaryngol. 2011 Oct;12(5):577-94. doi: 10.1007/s10162-011-0269-0. Epub 2011 May 13.
8
Distortion Product Otoacoustic Emissions in Mice Above and Below the Eliciting Primaries.
J Assoc Res Otolaryngol. 2023 Aug;24(4):413-428. doi: 10.1007/s10162-023-00903-4. Epub 2023 Jul 18.

引用本文的文献

1
Tectorial membrane: structure, function, and its implications for hearing loss.
Front Neurol. 2025 Aug 18;16:1630549. doi: 10.3389/fneur.2025.1630549. eCollection 2025.
2
Auditory cellular cooperativity probed via spontaneous otoacoustic emissions.
Biophys J. 2025 Apr 15;124(8):1208-1225. doi: 10.1016/j.bpj.2025.02.023. Epub 2025 Mar 3.
3
Distortion Product Otoacoustic Emissions in Mice Above and Below the Eliciting Primaries.
J Assoc Res Otolaryngol. 2023 Aug;24(4):413-428. doi: 10.1007/s10162-023-00903-4. Epub 2023 Jul 18.
4
Whistling While it Works: Spontaneous Otoacoustic Emissions and the Cochlear Amplifier.
J Assoc Res Otolaryngol. 2022 Feb;23(1):17-25. doi: 10.1007/s10162-021-00829-9. Epub 2022 Jan 3.

本文引用的文献

2
Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects.
Hear Res. 2021 Feb;400:108143. doi: 10.1016/j.heares.2020.108143. Epub 2020 Dec 5.
3
Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae.
J Neurosci Res. 2020 Sep;98(9):1745-1763. doi: 10.1002/jnr.24556. Epub 2019 Nov 24.
4
Morphological Immaturity of the Neonatal Organ of Corti and Associated Structures in Humans.
J Assoc Res Otolaryngol. 2019 Oct;20(5):461-474. doi: 10.1007/s10162-019-00734-2. Epub 2019 Aug 12.
6
Elasticity of individual protocadherin 15 molecules implicates tip links as the gating springs for hearing.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):11048-11056. doi: 10.1073/pnas.1902163116. Epub 2019 May 9.
7
Mouse screen reveals multiple new genes underlying mouse and human hearing loss.
PLoS Biol. 2019 Apr 11;17(4):e3000194. doi: 10.1371/journal.pbio.3000194. eCollection 2019 Apr.
9
Control of hearing sensitivity by tectorial membrane calcium.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5756-5764. doi: 10.1073/pnas.1805223116. Epub 2019 Mar 5.
10
Anisotropic Material Properties of Wild-Type and Tectb Tectorial Membranes.
Biophys J. 2019 Feb 5;116(3):573-585. doi: 10.1016/j.bpj.2018.12.019. Epub 2019 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验