Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
Environ Res. 2021 Nov;202:111789. doi: 10.1016/j.envres.2021.111789. Epub 2021 Jul 29.
Greenhouse gaseous (GHGs) emissions from cropland soils are one of the major contributors to global warming. However, the extent and pattern of these climatic breakdowns are usally determined by the management practices in-place. The use of biochar on cropland soils holds a great promise for increasing the overall crop productivity. Nevertheless, biochar application to agricultural soils has grown in popularity as a strategy to off-set the negative feedback associated with agriculture GHGs emissions, i.e., CO (carbon dioxide), CH (methane), and NO (nitrous oxide). Despite increasing efforts to uncover the potential of biochar to mitigate the farmland GHGs effects, there has been little synthesis of how different types of biochar affect GHGs fluxes from cropland soils under varied experimental conditions. Here, we presented a meta-analysis of the interactions between biochar and GHGs emissions across global cropland soils, with field experiments showing the strongest GHG mitigation potential, i.e. CO (RR = -0.108) and CH (RR = -0.399). The biochar pyrolysis temperature, feedstock, C: N ratio, and pH were also found to be important factors influencing GHGs emissions. A prominent reduction in NO (RR = -0.13) and CH (RR = -1.035) emissions was observed in neutral soils (pH = 6.6-7.3), whereas acidic soils (pH ≤ 6.5) accounted for the strongest mitigation effect on CO compared to NO and CH emissions. We also found that a biochar application rate of 30 t ha was best for mitigating GHGs emissions while achieving optimal crop yield. According to our meta-analysis, maize crop receiving biochar amendment showed a significant mitigation potential for CO, NO, and CH emissions. On the other hand, the use of biochar had shown significant impact on the global warming potential (GWP) of total GHGs emissions. The current data synthesis takes the lead in analyzing emissions status and mitigation potential for three of the most common GHGs from cropland soils and demonstrates that biochar application can significantly reduce the emissions budget from agriculture.
农田土壤温室气体(GHG)排放是全球变暖的主要因素之一。然而,这些气候崩溃的程度和模式通常取决于现有的管理实践。在农田土壤中使用生物炭对于提高整体作物生产力具有很大的潜力。然而,生物炭在农业土壤中的应用作为抵消与农业 GHG 排放相关的负面反馈的策略越来越受欢迎,即 CO(二氧化碳)、CH(甲烷)和 NO(氧化亚氮)。尽管越来越多的努力揭示了生物炭缓解农田 GHG 影响的潜力,但对于不同类型的生物炭如何在不同的实验条件下影响农田土壤 GHG 通量的综合研究很少。在这里,我们对全球农田土壤中生物炭与 GHG 排放之间的相互作用进行了荟萃分析,田间实验显示出最强的 GHG 缓解潜力,即 CO(RR=-0.108)和 CH(RR=-0.399)。生物炭热解温度、原料、C:N 比和 pH 也被发现是影响 GHG 排放的重要因素。在中性土壤(pH=6.6-7.3)中,观察到 NO(RR=-0.13)和 CH(RR=-1.035)排放的显著减少,而酸性土壤(pH≤6.5)与 NO 和 CH 排放相比,对 CO 的缓解效果最强。我们还发现,30 t ha 的生物炭施用量最有利于减少 GHG 排放,同时实现最佳作物产量。根据我们的荟萃分析,接受生物炭改良的玉米作物对 CO、NO 和 CH 排放表现出显著的缓解潜力。另一方面,生物炭的使用对总 GHG 排放的全球变暖潜势(GWP)产生了显著影响。目前的数据综合分析在分析农田土壤中三种最常见的 GHG 的排放状况和缓解潜力方面处于领先地位,表明生物炭的应用可以显著减少农业的排放预算。