Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P.O. Box 14634-00800, Nairobi, Kenya.
Int J Pharm. 2021 Sep 25;607:120960. doi: 10.1016/j.ijpharm.2021.120960. Epub 2021 Jul 30.
In this study, ascorbyl tocopherol succinate (ATS) was designed, synthesized and characterized via FT-IR, HR-MS, H NMR and C NMR, to simultaneously confer biomimetic and dual responsive properties of an antibiotic nanosystem to enhance their antibacterial efficacy and reduce antimicrobial resistance. Therefore, an in silico-aided design (to mimic the natural substrate of bacterial lipase) was employed to demonstrate the binding potential of ATS to lipase (-32.93 kcal/mol binding free energy (ΔG) and bacterial efflux pumps blocking potential (NorA ΔG: -37.10 kcal/mol, NorB ΔG: -34.46 kcal/mol). ATS bound stronger to lipase than the natural substrate (35 times lower Kd value). The vancomycin loaded solid lipid nanoparticles (VM-ATS-SLN) had a hydrodynamic diameter, zeta potential, polydispersity index and entrapment efficiency of 106.9 ± 1.4 nm, -16.5 ± 0.93 mV, 0.11 ± 0.012 and 61.9 ± 1.31%, respectively. In vitro biocompatibility studies revealed VM-ATS-SLN biosafety and non-haemolytic activity. Significant enhancement in VM release was achieved in response to acidified pH and lipase enzyme, compared to controls. VM-ATS-SLN showed enhanced sustained in vitro antibacterial activity for 5 days, 2-fold greater MRSA biofilm growth inhibition and 3.44-fold reduction in bacterial burden in skin infected mice model compared to bare VM. Therefore, ATS shows potential as a novel multifunctional adjuvant for effective and targeted delivery of antibiotics.
在这项研究中,通过傅里叶变换红外光谱(FT-IR)、高分辨率质谱(HR-MS)、氢核磁共振(1H NMR)和碳核磁共振(13C NMR)设计、合成并表征了抗坏血酸生育酚琥珀酸酯(ATS),以同时赋予抗生素纳米系统仿生和双重响应特性,从而增强其抗菌功效并降低抗菌药物耐药性。因此,采用计算机辅助设计(模拟细菌脂肪酶的天然底物)来证明 ATS 与脂肪酶的结合潜力(-32.93 kcal/mol 结合自由能(ΔG)和细菌外排泵阻断潜能(NorA ΔG:-37.10 kcal/mol,NorB ΔG:-34.46 kcal/mol)。ATS 与脂肪酶的结合强度强于天然底物(Kd 值低 35 倍)。载万古霉素的固体脂质纳米粒(VM-ATS-SLN)的水动力学直径、Zeta 电位、多分散指数和包封效率分别为 106.9±1.4nm、-16.5±0.93mV、0.11±0.012 和 61.9±1.31%。体外细胞相容性研究显示 VM-ATS-SLN 具有生物安全性和非溶血活性。与对照相比,VM-ATS-SLN 在酸性 pH 和脂肪酶响应下,VM 释放显著增强。与裸 VM 相比,VM-ATS-SLN 在皮肤感染小鼠模型中表现出增强的持续体外抗菌活性,对 MRSA 生物膜生长的抑制作用增加了 2 倍,细菌负荷减少了 3.44 倍。因此,ATS 有望成为一种新型多功能佐剂,用于有效且靶向递送抗生素。