1Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
2Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.
Neurosurg Focus. 2021 Aug;51(2):E14. doi: 10.3171/2021.5.FOCUS21200.
For currently available augmented reality workflows, 3D models need to be created with manual or semiautomatic segmentation, which is a time-consuming process. The authors created an automatic segmentation algorithm that generates 3D models of skin, brain, ventricles, and contrast-enhancing tumor from a single T1-weighted MR sequence and embedded this model into an automatic workflow for 3D evaluation of anatomical structures with augmented reality in a cloud environment. In this study, the authors validate the accuracy and efficiency of this automatic segmentation algorithm for brain tumors and compared it with a manually segmented ground truth set.
Fifty contrast-enhanced T1-weighted sequences of patients with contrast-enhancing lesions measuring at least 5 cm3 were included. All slices of the ground truth set were manually segmented. The same scans were subsequently run in the cloud environment for automatic segmentation. Segmentation times were recorded. The accuracy of the algorithm was compared with that of manual segmentation and evaluated in terms of Sørensen-Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and 95th percentile of Hausdorff distance (HD95).
The mean ± SD computation time of the automatic segmentation algorithm was 753 ± 128 seconds. The mean ± SD DSC was 0.868 ± 0.07, ASSD was 1.31 ± 0.63 mm, and HD95 was 4.80 ± 3.18 mm. Meningioma (mean 0.89 and median 0.92) showed greater DSC than metastasis (mean 0.84 and median 0.85). Automatic segmentation had greater accuracy for measuring DSC (mean 0.86 and median 0.87) and HD95 (mean 3.62 mm and median 3.11 mm) of supratentorial metastasis than those of infratentorial metastasis (mean 0.82 and median 0.81 for DSC; mean 5.26 mm and median 4.72 mm for HD95).
The automatic cloud-based segmentation algorithm is reliable, accurate, and fast enough to aid neurosurgeons in everyday clinical practice by providing 3D augmented reality visualization of contrast-enhancing intracranial lesions measuring at least 5 cm3. The next steps involve incorporation of other sequences and improving accuracy with 3D fine-tuning in order to expand the scope of augmented reality workflow.
对于现有的增强现实工作流程,需要使用手动或半自动分割创建 3D 模型,这是一个耗时的过程。作者创建了一种自动分割算法,可从单个 T1 加权 MR 序列生成皮肤、大脑、脑室和增强对比肿瘤的 3D 模型,并将该模型嵌入到云环境中用于自动评估解剖结构的 3D 增强现实工作流程中。在这项研究中,作者验证了这种自动分割算法对脑肿瘤的准确性和效率,并将其与手动分割的真实数据集进行了比较。
纳入了 50 名增强病变至少为 5cm3 的患者的增强 T1 加权序列。真实数据集的所有切片均进行手动分割。然后在云环境中对相同的扫描进行自动分割。记录分割时间。比较了算法的准确性,并通过 Sørensen-Dice 相似系数(DSC)、平均对称面距离(ASSD)和 Hausdorff 距离的第 95 百分位数(HD95)进行评估。
自动分割算法的平均计算时间±SD 为 753±128 秒。平均 DSC±SD 为 0.868±0.07,ASSD±SD 为 1.31±0.63mm,HD95±SD 为 4.80±3.18mm。脑膜瘤(平均 0.89,中位数 0.92)的 DSC 大于转移瘤(平均 0.84,中位数 0.85)。与后颅窝转移瘤相比,自动分割在测量 DSC(平均 0.86,中位数 0.87)和 HD95(平均 3.62mm,中位数 3.11mm)方面具有更高的准确性,而在后颅窝转移瘤中,自动分割在测量 DSC(平均 0.82,中位数 0.81)和 HD95(平均 5.26mm,中位数 4.72mm)方面具有更高的准确性。
自动基于云的分割算法可靠、准确且速度足够快,可以通过提供至少 5cm3 的增强颅内病变的 3D 增强现实可视化,为神经外科医生在日常临床实践中提供帮助。下一步涉及纳入其他序列并通过 3D 微调提高准确性,以扩展增强现实工作流程的范围。