Suppr超能文献

全球分数各向异性可预测精神病超高危个体 12 个月后向精神病的转变。

Global fractional anisotropy predicts transition to psychosis after 12 months in individuals at ultra-high risk for psychosis.

机构信息

Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.

Copenhagen Research Centre for Mental Health (CORE), Copenhagen University Hospital, Copenhagen, Denmark.

出版信息

Acta Psychiatr Scand. 2021 Nov;144(5):448-463. doi: 10.1111/acps.13355. Epub 2021 Aug 9.

Abstract

OBJECTIVE

Psychosis spectrum disorders are associated with cerebral changes, but the prognostic value and clinical utility of these findings are unclear. Here, we applied a multivariate statistical model to examine the predictive accuracy of global white matter fractional anisotropy (FA) for transition to psychosis in individuals at ultra-high risk for psychosis (UHR).

METHODS

110 UHR individuals underwent 3 Tesla diffusion-weighted imaging and clinical assessments at baseline, and after 6 and 12 months. Using logistic regression, we examined the reliability of global FA at baseline as a predictor for psychosis transition after 12 months. We tested the predictive accuracy, sensitivity and specificity of global FA in a multivariate prediction model accounting for potential confounders to FA (head motion in scanner, age, gender, antipsychotic medication, parental socioeconomic status and activity level). In secondary analyses, we tested FA as a predictor of clinical symptoms and functional level using multivariate linear regression.

RESULTS

Ten UHR individuals had transitioned to psychosis after 12 months (9%). The model reliably predicted transition at 12 months (χ  = 17.595, p = 0.040), accounted for 15-33% of the variance in transition outcome with a sensitivity of 0.70, a specificity of 0.88 and AUC of 0.87. Global FA predicted level of UHR symptoms (R  = 0.055, F = 6.084, p = 0.016) and functional level (R  = 0.040, F = 4.57, p = 0.036) at 6 months, but not at 12 months.

CONCLUSION

Global FA provided prognostic information on clinical outcome and symptom course of UHR individuals. Our findings suggest that the application of prediction models including neuroimaging data can inform clinical management on risk for psychosis transition.

摘要

目的

精神分裂症谱系障碍与大脑变化有关,但这些发现的预后价值和临床实用性尚不清楚。在这里,我们应用多变量统计模型来检查全脑白质各向异性分数(FA)对精神分裂症超高危个体(UHR)向精神病转变的预测准确性。

方法

110 名 UHR 个体在基线时接受了 3 Tesla 弥散加权成像和临床评估,并在 6 个月和 12 个月后进行了评估。我们使用逻辑回归检查了基线时全脑 FA 的可靠性,作为 12 个月后精神病转变的预测因子。我们测试了在一个多变量预测模型中,全脑 FA 在考虑到对 FA 的潜在混杂因素(扫描时头部运动、年龄、性别、抗精神病药物、父母社会经济地位和活动水平)后的预测准确性、敏感性和特异性。在二次分析中,我们使用多元线性回归测试了 FA 作为临床症状和功能水平的预测因子。

结果

12 个月后,有 10 名 UHR 个体转变为精神病(9%)。该模型可靠地预测了 12 个月时的转变(χ 2 = 17.595,p = 0.040),解释了转变结果的 15-33%的方差,灵敏度为 0.70,特异性为 0.88,AUC 为 0.87。全脑 FA 预测了 UHR 症状(R 2 = 0.055,F = 6.084,p = 0.016)和功能水平(R 2 = 0.040,F = 4.57,p = 0.036)在 6 个月时的水平,但在 12 个月时则不然。

结论

全脑 FA 提供了 UHR 个体临床结局和症状过程的预后信息。我们的发现表明,应用包括神经影像学数据的预测模型可以为精神病转变的风险提供临床管理信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验