Suppr超能文献

对临床高危精神病个体白质微观结构的叙述性文献综述。

A narrative literature review of white matter microstructure in individuals at clinical high risk for psychosis.

作者信息

Su Wenjun, Wang Jijun, Tang Yingying

机构信息

Department of Psychiatry, NYU Langone Health, New York, NY 10016, USA.

Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.

出版信息

Psychoradiology. 2024 Dec 24;5:kkae031. doi: 10.1093/psyrad/kkae031. eCollection 2025.

Abstract

Schizophrenia is a severe psychiatric disorder characterized by widespread white matter (WM) alterations, manifesting as neurodevelopmental deficits and dysconnectivity abnormalities. Over the past two decades, studies have focused on the clinical high-risk (CHR) stage of psychosis and have yielded fruitful information on WM abnormalities that exist prior to the full onset of psychosis, shedding light on biological mechanisms underlying psychosis development. This review presents a summary of current findings on cross-sectional and longitudinal WM alterations in individuals with CHR and their links to clinical symptoms and neurocognitive dysfunction. Next, we review the utilization of WM characterization in predicting clinical outcomes. Taken together, the literature suggests the clinical significance of WM characteristics and their great potential in predicting the conversion to psychosis, despite some methodological and conceptual challenges that remain to be addressed in future studies. Future CHR research would greatly benefit from utilizing WM to guide pharmacological and non-pharmacological targeted treatments, optimize clinical prediction models, and enable more accurate clinical care.

摘要

精神分裂症是一种严重的精神障碍,其特征是广泛的白质(WM)改变,表现为神经发育缺陷和连接异常。在过去二十年中,研究集中在精神病的临床高危(CHR)阶段,并已获得关于精神病完全发作之前存在的WM异常的丰富信息,为精神病发展的生物学机制提供了线索。本综述总结了CHR个体横断面和纵向WM改变的当前研究结果及其与临床症状和神经认知功能障碍的联系。接下来,我们回顾WM特征在预测临床结果中的应用。综合来看,文献表明WM特征具有临床意义,并且在预测向精神病的转化方面具有巨大潜力,尽管在未来研究中仍有一些方法学和概念上的挑战有待解决。未来的CHR研究将极大地受益于利用WM来指导药物和非药物靶向治疗、优化临床预测模型并实现更准确的临床护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a746/12097486/4ef340b742e5/kkae031fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验