Suppr超能文献

应激诱导的过早衰老成肌细胞释放的细胞外囊泡会损害内皮功能和增殖。

Extracellular vesicles released from stress-induced prematurely senescent myoblasts impair endothelial function and proliferation.

作者信息

Hettinger Zachary R, Kargl Christopher K, Shannahan Jonathan H, Kuang Shihuan, Gavin Timothy P

机构信息

Max E. Wastl Human Performance Laboratory, Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA.

School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA.

出版信息

Exp Physiol. 2021 Oct;106(10):2083-2095. doi: 10.1113/EP089423. Epub 2021 Aug 26.

Abstract

NEW FINDINGS

What is the central question of this study? What is the impact of stress-induced premature senescence on skeletal muscle myoblast-derived extracellular vesicles (EVs) and myoblast-endothelial cell crosstalk? What is the main finding and its importance? Hydrogen peroxide treatment of human myoblasts induced stress-induced premature senescence (SIPS) and increased the release of exosome-sized EVs (30-150 nm in size) five-fold compared to untreated controls. Treatment of SIPS myoblast-derived EVs on endothelial cells increased senescence markers and decreased proliferation. Gene expression analysis of SIPS myoblast-derived EVs revealed a four-fold increase in senescence factor transforming growth factor-β. These results highlight potential mechanisms by which senescence imparts deleterious effects on the cellular microenvironment.

ABSTRACT

Cellular senescence contributes to numerous diseases through the release of pro-inflammatory factors as part of the senescence-associated secretory phenotype (SASP). In skeletal muscle, resident muscle progenitor cells (satellite cells) express markers of senescence with advancing age and in response to various pathologies, which contributes to reduced regenerative capacities in vitro. Satellite cells regulate their microenvironment in part through the release of extracellular vesicles (EVs), but the effect of senescence on EV signaling is unknown. Primary human myoblasts were isolated following biopsies of the vastus lateralis from young healthy subjects. Hydrogen peroxide (H O ) treatment was used to achieve stress-induced premature senescence (SIPS) of myoblasts. EVs secreted by myoblasts with and without H O treatment were isolated, analysed and used to treat human umbilical vein endothelial cells (HUVECs) to assess senescence and angiogenic impact. H O treatment of primary human myoblasts in vitro increased markers of senescence (β-galactosidase and p21 ), decreased proliferation and increased exosome-like EV (30-150 nm) release approximately five-fold. In HUVECs, EV treatment from H O -treated myoblasts increased markers of senescence (β-galactosidase and transforming growth factor β), decreased proliferation and impaired HUVEC tube formation. Analysis of H O -treated myoblast-derived EV mRNA revealed a nearly four-fold increase in transforming growth factor β expression. Our novel results highlight the impact of SIPS on myoblast communication and identify a VasoMyo Crosstalk by which SIPS myoblast-derived EVs impair endothelial cell function in vitro.

摘要

新发现

本研究的核心问题是什么?应激诱导的早衰对骨骼肌成肌细胞衍生的细胞外囊泡(EVs)和成肌细胞 - 内皮细胞间的相互作用有何影响?主要发现及其重要性是什么?用过氧化氢处理人成肌细胞可诱导应激诱导的早衰(SIPS),与未处理的对照相比,外泌体大小的EVs(大小为30 - 150纳米)的释放增加了五倍。用SIPS成肌细胞衍生的EVs处理内皮细胞会增加衰老标志物并降低增殖。对SIPS成肌细胞衍生的EVs进行基因表达分析发现衰老因子转化生长因子-β增加了四倍。这些结果突出了衰老对细胞微环境产生有害影响的潜在机制。

摘要

细胞衰老通过作为衰老相关分泌表型(SASP)一部分的促炎因子的释放导致多种疾病。在骨骼肌中,驻留的肌肉祖细胞(卫星细胞)随着年龄增长以及对各种病理状况的反应而表达衰老标志物,这导致体外再生能力降低。卫星细胞部分通过释放细胞外囊泡(EVs)来调节其微环境,但衰老对EV信号传导的影响尚不清楚。从年轻健康受试者的股外侧肌活检后分离出原代人成肌细胞。用过氧化氢(H₂O₂)处理以实现成肌细胞的应激诱导早衰(SIPS)。分离、分析经H₂O₂处理和未处理的成肌细胞分泌的EVs,并用于处理人脐静脉内皮细胞(HUVECs)以评估衰老和血管生成影响。体外用过氧化氢处理原代人成肌细胞会增加衰老标志物(β - 半乳糖苷酶和p21),降低增殖并使外泌体样EV(30 - 150纳米)释放增加约五倍。在HUVECs中,用经H₂O₂处理的成肌细胞的EV处理会增加衰老标志物(β - 半乳糖苷酶和转化生长因子β),降低增殖并损害HUVECs的管形成。对经H₂O₂处理的成肌细胞衍生的EV mRNA分析发现转化生长因子β表达增加了近四倍。我们的新结果突出了SIPS对成肌细胞通讯的影响,并确定了一种血管 - 肌肉相互作用,通过这种相互作用,SIPS成肌细胞衍生的EVs在体外损害内皮细胞功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验